咨询与建议

限定检索结果

文献类型

  • 45 篇 期刊文献
  • 43 篇 会议

馆藏范围

  • 88 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 55 篇 工学
    • 41 篇 计算机科学与技术...
    • 39 篇 软件工程
    • 10 篇 生物工程
    • 9 篇 控制科学与工程
    • 3 篇 机械工程
    • 3 篇 信息与通信工程
    • 2 篇 电气工程
    • 1 篇 光学工程
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 化学工程与技术
    • 1 篇 农业工程
    • 1 篇 林业工程
  • 45 篇 理学
    • 32 篇 数学
    • 14 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 系统科学
    • 3 篇 物理学
    • 1 篇 化学
    • 1 篇 地球物理学
  • 12 篇 管理学
    • 8 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 教育学
    • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 文学
    • 1 篇 中国语言文学
    • 1 篇 外国语言文学
  • 1 篇 农学

主题

  • 5 篇 generative adver...
  • 4 篇 machine learning
  • 3 篇 deep neural netw...
  • 3 篇 semantics
  • 2 篇 object detection
  • 2 篇 reinforcement le...
  • 2 篇 inference engine...
  • 2 篇 statistics
  • 2 篇 iterative method...
  • 2 篇 optimization
  • 2 篇 gradient methods
  • 2 篇 diffusion
  • 2 篇 molecules
  • 2 篇 decision making
  • 2 篇 crowdsourcing
  • 2 篇 bayesian network...
  • 2 篇 calibration
  • 2 篇 monte carlo meth...
  • 2 篇 supervised learn...
  • 1 篇 image enhancemen...

机构

  • 9 篇 dept. of comp. s...
  • 8 篇 dept. of comp. s...
  • 6 篇 dept. of comp. s...
  • 5 篇 the hong kong un...
  • 5 篇 key lab of intel...
  • 4 篇 gaoling school o...
  • 4 篇 peng cheng labor...
  • 4 篇 tencent ai lab
  • 4 篇 department of co...
  • 4 篇 beijing key labo...
  • 4 篇 hong kong univer...
  • 4 篇 dept. of physics...
  • 3 篇 school of comput...
  • 3 篇 dept. of comp. s...
  • 3 篇 south china univ...
  • 3 篇 dept. of comp. s...
  • 3 篇 gaoling school o...
  • 3 篇 dept. of comp. s...
  • 2 篇 intel labs china
  • 2 篇 dept. of comp. s...

作者

  • 58 篇 zhu jun
  • 20 篇 jun zhu
  • 19 篇 zhang bo
  • 18 篇 li chongxuan
  • 15 篇 su hang
  • 9 篇 bao fan
  • 7 篇 dong yinpeng
  • 7 篇 chongxuan li
  • 7 篇 xu kun
  • 6 篇 chen jianfei
  • 6 篇 bo zhang
  • 5 篇 zhang lei
  • 5 篇 pang tianyu
  • 5 篇 liu shilong
  • 5 篇 zhang hao
  • 5 篇 li feng
  • 4 篇 du chao
  • 4 篇 hang su
  • 3 篇 ren tongzheng
  • 3 篇 guoqiang wu

语言

  • 88 篇 英文
检索条件"机构=State Key Lab for Intell. Tech. and Systems"
88 条 记 录,以下是11-20 订阅
排序:
Asymptotically unbiased instance-wise regularized partial AUC optimization: theory and algorithm  22
Asymptotically unbiased instance-wise regularized partial AU...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing systems
作者: Huiyang Shao Qianqian Xu Zhiyong Yang Shilong Bao Qingming Huang Key Lab of Intell. Info. Process. Inst. of Comput. Tech. CAS and School of Computer Science and Tech. University of Chinese Academy of Sciences Key Lab of Intell. Info. Process. Inst. of Comput. Tech. CAS School of Computer Science and Tech. University of Chinese Academy of Sciences State Key Lab of Info. Security Inst. of Info. Engineering CAS and School of Cyber Security University of Chinese Academy of Sciences Key Lab of Intell. Info. Process. Inst. of Comput. Tech. CAS and School of Computer Science and Tech. University of Chinese Academy of Sciences and BDKM University of Chinese Academy of Sciences and Peng Cheng Laboratory
The Partial Area Under the ROC Curve (PAUC), typically including One-way Partial AUC (OPAUC) and Two-way Partial AUC (TPAUC), measures the average performance of a binary classifier within a specific false positive ra...
来源: 评论
Building Bridge Across the Time: Disruption and Restoration of Murals In the Wild
Building Bridge Across the Time: Disruption and Restoration ...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Huiyang Shao Qianqian Xu Peisong Wen Peifeng Gao Zhiyong Yang Qingming Huang Key Lab of Intell. Info. Process. Inst. of Comput. Tech. CAS School of Computer Science and Tech. University of Chinese Academy of Sciences State Key Lab of Info. Security Inst. of Info. Engineering CAS School of Cyber Security University of Chinese Academy of Sciences BDKM University of Chinese Academy of Sciences Peng Cheng Laboratory
In this paper, we focus on the mural-restoration task, which aims to detect damaged regions in the mural and repaint them automatically. Different from traditional image restoration tasks like in/out/blind-painting an...
来源: 评论
Detection Transformer with Stable Matching
arXiv
收藏 引用
arXiv 2023年
作者: Liu, Shilong Ren, Tianhe Chen, Jiayu Zeng, Zhaoyang Zhang, Hao Li, Feng Li, Hongyang Huang, Jun Su, Hang Zhu, Jun Zhang, Lei Dept. of Comp. Sci. and Tech. BNRist Center State Key Lab for Intell. Tech. & Sys. Institute for AI Tsinghua-Bosch Joint Center for ML Tsinghua University China Alibaba Group China The Hong Kong University of Science and Technology Hong Kong South China University of Technology China
This paper is concerned with the matching stability problem across different decoder layers in DEtection TRansformers (DETR). We point out that the unstable matching in DETR is caused by a multi-optimization path prob... 详细信息
来源: 评论
Detection Transformer with Stable Matching
Detection Transformer with Stable Matching
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Shilong Liu Tianhe Ren Jiayu Chen Zhaoyang Zeng Hao Zhang Feng Li Hongyang Li Jun Huang Hang Su Jun Zhu Lei Zhang Dept. of Comp. Sci. and Tech. BNRist Center State Key Lab for Intell. Tech. & Sys. Institute for AI Tsinghua-Bosch Joint Center for ML Tsinghua University International Digital Economy Academy (IDEA) Platform of AI (PAI) Alibaba Group The Hong Kong University of Science and Technology South China University of Technology
This paper is concerned with the matching stability problem across different decoder layers in DEtection TRansformers (DETR). We point out that the unstable matching in DETR is caused by a multi-optimization path prob...
来源: 评论
One Transformer Fits All Distributions in Multi-Modal Diffusion at Scale
arXiv
收藏 引用
arXiv 2023年
作者: Bao, Fan Nie, Shen Xue, Kaiwen Li, Chongxuan Pu, Shi Wang, Yaole Yue, Gang Cao, Yue Su, Hang Zhu, Jun Dept. of Comp. Sci. & Tech. Institute for AI Tsinghua-Huawei Joint Center for AI BNRist Center State Key Lab for Intell. Tech. & Sys. Tsinghua University China ShengShu Beijing China Gaoling School of AI Renmin University of China Beijing Key Lab of Big Data Management and Analysis Methods Beijing China Beijing Academy of Artificial Intelligence China Guangzhou China
This paper proposes a unified diffusion framework (dubbed UniDiffuser) to fit all distributions relevant to a set of multi-modal data in one model. Our key insight is – learning diffusion models for marginal, conditi... 详细信息
来源: 评论
Bi-level score matching for learning energy-based latent variable models  34
Bi-level score matching for learning energy-based latent var...
收藏 引用
34th Conference on Neural Information Processing systems, NeurIPS 2020
作者: Bao, Fan Li, Chongxuan Xu, Kun Su, Hang Zhu, Jun Zhang, Bo Dept. of Comp. Sci. & Tech. Institute for AI THBI Lab. BNRist Center State Key Lab for Intell. Tech. & Sys. Tsinghua University Beijing China
Score matching (SM) [24] provides a compelling approach to learn energy-based models (EBMs) by avoiding the calculation of partition function. However, it remains largely open to learn energy-based latent variable mod... 详细信息
来源: 评论
Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection
arXiv
收藏 引用
arXiv 2023年
作者: Liu, Shilong Zeng, Zhaoyang Ren, Tianhe Li, Feng Zhang, Hao Yang, Jie Jiang, Qing Li, Chunyuan Yang, Jianwei Su, Hang Zhu, Jun Zhang, Lei Dept. of Comp. Sci. and Tech. BNRist Center State Key Lab for Intell. Tech. & Sys. Institute for AI Tsinghua-Bosch Joint Center for ML Tsinghua University China China The Hong Kong University of Science and Technology Hong Kong The Chinese University of Hong Kong Shenzhen China Microsoft Research Redmond United States South China University of Technology China
In this paper, we develop an open-set object detector, called Grounding DINO, by marrying Transformer-based detector DINO with grounded pre-training, which can detect arbitrary objects with human inputs such as catego... 详细信息
来源: 评论
DAB-DETR: DYNAMIC ANCHOR BOXES ARE BETTER QUERIES FOR DETR
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Shilong Li, Feng Zhang, Hao Yang, Xiao Qi, Xianbiao Su, Hang Zhu, Jun Zhang, Lei Dept. of Comp. Sci. and Tech. BNRist Center State Key Lab for Intell. Tech. & Sys. Institute for AI Tsinghua-Bosch Joint Center for ML Tsinghua University China China Hong Kong University of Science and Technology Hong Kong Peng Cheng Laboratory Guangdong Shenzhen China
We present in this paper a novel query formulation using dynamic anchor boxes for DETR (DEtection TRansformer) and offer a deeper understanding of the role of queries in DETR. This new formulation directly uses box co... 详细信息
来源: 评论
Maximum Likelihood Training for Score-Based Diffusion ODEs by High-Order Denoising Score Matching
arXiv
收藏 引用
arXiv 2022年
作者: Lu, Cheng Zheng, Kaiwen Bao, Fan Chen, Jianfei Li, Chongxuan Zhu, Jun Dept. of Comp. Sci. & Tech. Institute for AI Tsinghua-Bosch Joint Center for ML BNRist Center State Key Lab for Intell. Tech. & Sys. Tsinghua University Peng Cheng Laboratory China Gaoling School of AI Renmin University of China Beijing Key Lab of Big Data Management and Analysis Methods Beijing China
Score-based generative models have excellent performance in terms of generation quality and likelihood. They model the data distribution by matching a parameterized score network with first-order data score functions.... 详细信息
来源: 评论
Estimating the Optimal Covariance with Imperfect Mean in Diffusion Probabilistic Models
arXiv
收藏 引用
arXiv 2022年
作者: Bao, Fan Li, Chongxuan Sun, Jiacheng Zhu, Jun Zhang, Bo Dept. of Comp. Sci. & Tech. Institute for AI Tsinghua-Huawei Joint Center for AI BNRist Center State Key Lab for Intell. Tech. & Sys. Tsinghua University China Gaoling School of AI Renmin University of China Beijing Key Lab of Big Data Management and Analysis Methods Beijing China Huawei Noah's Ark Lab. China
Diffusion probabilistic models (DPMs) are a class of powerful deep generative models (DGMs). Despite their success, the iterative generation process over the full timesteps is much less efficient than other DGMs such ... 详细信息
来源: 评论