咨询与建议

限定检索结果

文献类型

  • 45 篇 期刊文献
  • 43 篇 会议

馆藏范围

  • 88 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 55 篇 工学
    • 41 篇 计算机科学与技术...
    • 39 篇 软件工程
    • 10 篇 生物工程
    • 9 篇 控制科学与工程
    • 3 篇 机械工程
    • 3 篇 信息与通信工程
    • 2 篇 电气工程
    • 1 篇 光学工程
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 化学工程与技术
    • 1 篇 农业工程
    • 1 篇 林业工程
  • 45 篇 理学
    • 32 篇 数学
    • 14 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 系统科学
    • 3 篇 物理学
    • 1 篇 化学
    • 1 篇 地球物理学
  • 12 篇 管理学
    • 8 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 教育学
    • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 文学
    • 1 篇 中国语言文学
    • 1 篇 外国语言文学
  • 1 篇 农学

主题

  • 5 篇 generative adver...
  • 4 篇 machine learning
  • 3 篇 deep neural netw...
  • 3 篇 semantics
  • 2 篇 object detection
  • 2 篇 reinforcement le...
  • 2 篇 inference engine...
  • 2 篇 statistics
  • 2 篇 iterative method...
  • 2 篇 optimization
  • 2 篇 gradient methods
  • 2 篇 diffusion
  • 2 篇 molecules
  • 2 篇 decision making
  • 2 篇 crowdsourcing
  • 2 篇 bayesian network...
  • 2 篇 calibration
  • 2 篇 monte carlo meth...
  • 2 篇 supervised learn...
  • 1 篇 image enhancemen...

机构

  • 9 篇 dept. of comp. s...
  • 8 篇 dept. of comp. s...
  • 6 篇 dept. of comp. s...
  • 5 篇 the hong kong un...
  • 5 篇 key lab of intel...
  • 4 篇 gaoling school o...
  • 4 篇 peng cheng labor...
  • 4 篇 tencent ai lab
  • 4 篇 department of co...
  • 4 篇 beijing key labo...
  • 4 篇 hong kong univer...
  • 4 篇 dept. of physics...
  • 3 篇 school of comput...
  • 3 篇 dept. of comp. s...
  • 3 篇 south china univ...
  • 3 篇 dept. of comp. s...
  • 3 篇 gaoling school o...
  • 3 篇 dept. of comp. s...
  • 2 篇 intel labs china
  • 2 篇 dept. of comp. s...

作者

  • 58 篇 zhu jun
  • 20 篇 jun zhu
  • 19 篇 zhang bo
  • 18 篇 li chongxuan
  • 15 篇 su hang
  • 9 篇 bao fan
  • 7 篇 dong yinpeng
  • 7 篇 chongxuan li
  • 7 篇 xu kun
  • 6 篇 chen jianfei
  • 6 篇 bo zhang
  • 5 篇 zhang lei
  • 5 篇 pang tianyu
  • 5 篇 liu shilong
  • 5 篇 zhang hao
  • 5 篇 li feng
  • 4 篇 du chao
  • 4 篇 hang su
  • 3 篇 ren tongzheng
  • 3 篇 guoqiang wu

语言

  • 88 篇 英文
检索条件"机构=State Key Lab for Intell. Tech. and Systems"
88 条 记 录,以下是51-60 订阅
排序:
Max-mahalanobis linear discriminant analysis networks
arXiv
收藏 引用
arXiv 2018年
作者: Pang, Tianyu Du, Chao Zhu, Jun Dept. of Comp. Sci. and Tech. BNRist Center State Key Lab for Intell. Tech. and Sys. THBI Lab Tsinghua University Beijing100084 China
A deep neural network (DNN) consists of a nonlinear transformation from an input to a feature representation, followed by a common softmax linear classifier. Though many efforts have been devoted to designing a proper... 详细信息
来源: 评论
Lazy-CFR: fast and near-optimal regret minimization for extensive games with imperfect information
arXiv
收藏 引用
arXiv 2018年
作者: Zhou, Yichi Ren, Tongzheng Yan, Dong Li, Jialian Zhu, Jun Dept. of Comp. Sci. & Tech. BNRist Center State Key Lab for Intell. Tech. & Sys. THBI Lab Tsinghua University Beijing100084 China
Counterfactual regret minimization (CFR) is the most popular algorithm on solving two-player zero-sum extensive games with imperfect information and achieves state-of-the-art results in practice. However, the performa... 详细信息
来源: 评论
Semi-crowdsourced clustering with deep generative models
arXiv
收藏 引用
arXiv 2018年
作者: Luo, Yucen Tian, Tian Shi, Jiaxin Zhu, Jun Zhang, Bo Dept. of Comp. Sci. & Tech. Institute for AI THBI Lab BNRist Center State Key Lab for Intell. Tech. & Sys. Tsinghua University Beijing China
We consider the semi-supervised clustering problem where crowdsourcing provides noisy information about the pairwise comparisons on a small subset of data, i.e., whether a sample pair is in the same cluster. We propos... 详细信息
来源: 评论
Semi-crowdsourced clustering with deep generative models  18
Semi-crowdsourced clustering with deep generative models
收藏 引用
Proceedings of the 32nd International Conference on Neural Information Processing systems
作者: Yucen Luo Tian Tian Jiaxin Shi Jun Zhu Bo Zhang Dept. of Comp. Sci. & Tech. Institute for AI THBI Lab BNRist Center State Key Lab for Intell. Tech. & Sys. Tsinghua University Beijing China
We consider the semi-supervised clustering problem where crowdsourcing provides noisy information about the pairwise comparisons on a small subset of data, i.e., whether a sample pair is in the same cluster. We propos...
来源: 评论
Deep structured generative models
arXiv
收藏 引用
arXiv 2018年
作者: Xu, Kun Liang, Haoyu Su, Hang Zhang, Bo Zhu, Jun Dept. of Comp. Sci. and Tech BNRist Center State Key Lab for Intell. Tech. and Sys THBI Lab Tsinghua University Beijing100084 China
Deep generative models have shown promising results in generating realistic images, but it is still non-trivial to generate images with complicated structures. The main reason is that most of the current generative mo... 详细信息
来源: 评论
Graphical generative adversarial networks
arXiv
收藏 引用
arXiv 2018年
作者: Li, Chongxuan Welling, Max Zhu, Jun Zhang, Bo Department of Computer Science & Technology Institute for Artificial Intelligence BNRist Center THBI Lab State Key Lab for Intell. Tech. & Sys. Tsinghua University
We propose Graphical Generative Adversarial Networks (Graphical-GAN) to model structured data. Graphical-GAN conjoins the power of Bayesian networks on compactly representing the dependency structures among random var... 详细信息
来源: 评论
Learning implicit generative models by teaching explicit ones
arXiv
收藏 引用
arXiv 2018年
作者: Du, Chao Xu, Kun Li, Chongxuan Zhang, Bo Zhu, Jun Dept. of Comp. Sci. and Tech BNRist Center State Key Lab for Intell. Tech. and Sys THBI Lab Tsinghua University Beijing100084 China
Implicit generative models are difficult to train as no explicit density functions are defined. Generative adversarial nets (GANs) present a minimax framework to train such models, which however can suffer from mode c... 详细信息
来源: 评论
Towards training probabilistic topic models on neuromorphic multi-chip systems
arXiv
收藏 引用
arXiv 2018年
作者: Xiao, Zihao Chen, Jianfei Zhu, Jun Dept. of Comp. Sci. and Tech. TNList Lab State Key Lab for Intell. Tech. and Sys. Center for Bio-Inspired Computing Research Tsinghua University Beijing100084 China
Probabilistic topic models are popular unsupervised learning methods, including probabilistic latent semantic indexing (pLSI) and latent Dirichlet allocation (LDA). By now, their training is implemented on general pur... 详细信息
来源: 评论
A spectral approach to gradient estimation for implicit distributions
arXiv
收藏 引用
arXiv 2018年
作者: Shi, Jiaxin Sun, Shengyang Zhu, Jun Dept. of Comp. Sci. and Tech. BNRist Center State Key Lab for Intell. Tech. and Sys. THBI Lab Tsinghua University Dept. of Comp. Sci. University of Toronto
Recently there have been increasing interests in learning and inference with implicit distributions (i.e., distributions without tractable densities). To this end, we develop a gradient estimator for implicit distribu... 详细信息
来源: 评论
Bandit learning with implicit feedback  18
Bandit learning with implicit feedback
收藏 引用
Proceedings of the 32nd International Conference on Neural Information Processing systems
作者: Yi Qi Qingyun Wu Hongning Wang Jie Tang Maosong Sun State Key Lab of Intell. Tech. & Sys. Institution for Artificial Intelligence Dept. of Comp. Sci. & Tech. Tsinghua University Beijing China Department of Computer Science University of Virginia
Implicit feedback, such as user clicks, although abundant in online information service systems, does not provide substantial evidence on users' evaluation of system's output. Without proper modeling, such inc...
来源: 评论