咨询与建议

限定检索结果

文献类型

  • 45 篇 期刊文献
  • 43 篇 会议

馆藏范围

  • 88 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 55 篇 工学
    • 41 篇 计算机科学与技术...
    • 39 篇 软件工程
    • 10 篇 生物工程
    • 9 篇 控制科学与工程
    • 3 篇 机械工程
    • 3 篇 信息与通信工程
    • 2 篇 电气工程
    • 1 篇 光学工程
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 化学工程与技术
    • 1 篇 农业工程
    • 1 篇 林业工程
  • 45 篇 理学
    • 32 篇 数学
    • 14 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 系统科学
    • 3 篇 物理学
    • 1 篇 化学
    • 1 篇 地球物理学
  • 12 篇 管理学
    • 8 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 教育学
    • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 文学
    • 1 篇 中国语言文学
    • 1 篇 外国语言文学
  • 1 篇 农学

主题

  • 5 篇 generative adver...
  • 4 篇 machine learning
  • 3 篇 deep neural netw...
  • 3 篇 semantics
  • 2 篇 object detection
  • 2 篇 reinforcement le...
  • 2 篇 inference engine...
  • 2 篇 statistics
  • 2 篇 iterative method...
  • 2 篇 optimization
  • 2 篇 gradient methods
  • 2 篇 diffusion
  • 2 篇 molecules
  • 2 篇 decision making
  • 2 篇 crowdsourcing
  • 2 篇 bayesian network...
  • 2 篇 calibration
  • 2 篇 monte carlo meth...
  • 2 篇 supervised learn...
  • 1 篇 image enhancemen...

机构

  • 9 篇 dept. of comp. s...
  • 8 篇 dept. of comp. s...
  • 6 篇 dept. of comp. s...
  • 5 篇 the hong kong un...
  • 5 篇 key lab of intel...
  • 4 篇 gaoling school o...
  • 4 篇 peng cheng labor...
  • 4 篇 tencent ai lab
  • 4 篇 department of co...
  • 4 篇 beijing key labo...
  • 4 篇 hong kong univer...
  • 4 篇 dept. of physics...
  • 3 篇 school of comput...
  • 3 篇 dept. of comp. s...
  • 3 篇 south china univ...
  • 3 篇 dept. of comp. s...
  • 3 篇 gaoling school o...
  • 3 篇 dept. of comp. s...
  • 2 篇 intel labs china
  • 2 篇 dept. of comp. s...

作者

  • 58 篇 zhu jun
  • 20 篇 jun zhu
  • 19 篇 zhang bo
  • 18 篇 li chongxuan
  • 15 篇 su hang
  • 9 篇 bao fan
  • 7 篇 dong yinpeng
  • 7 篇 chongxuan li
  • 7 篇 xu kun
  • 6 篇 chen jianfei
  • 6 篇 bo zhang
  • 5 篇 zhang lei
  • 5 篇 pang tianyu
  • 5 篇 liu shilong
  • 5 篇 zhang hao
  • 5 篇 li feng
  • 4 篇 du chao
  • 4 篇 hang su
  • 3 篇 ren tongzheng
  • 3 篇 guoqiang wu

语言

  • 88 篇 英文
检索条件"机构=State Key Lab for Intell. Tech. and Systems"
88 条 记 录,以下是61-70 订阅
排序:
Composite binary decomposition networks
arXiv
收藏 引用
arXiv 2018年
作者: Qiaoben, You Wang, Zheng Li, Jianguo Dong, Yinpeng Jiang, Yu-Gang Zhu, Jun Dept. of Comp. Sci. and Tech. State Key Lab for Intell. Tech. and Sys. Institute for AI Tsinghua University School of Computer Science Fudan University Intel Labs China
Binary neural networks have great resource and computing efficiency, while suffer from long training procedure and non-negligible accuracy drops, when comparing to the fullprecision counterparts. In this paper, we pro... 详细信息
来源: 评论
Stochastic expectation maximization with variance reduction  18
Stochastic expectation maximization with variance reduction
收藏 引用
Proceedings of the 32nd International Conference on Neural Information Processing systems
作者: Jianfei Chen Jun Zhu Yee Whye Teh Tong Zhang Dept. of Comp. Sci. & Tech. BNRist Center State Key Lab for Intell. Tech. & Sys. Institute for AI THBI Lab Tsinghua University Beijing China Department of Statistics University of Oxford Tencent AI Lab
Expectation-Maximization (EM) is a popular tool for learning latent variable models, but the vanilla batch EM does not scale to large data sets because the whole data set is needed at every E-step. Stochastic Expectat...
来源: 评论
Graphical generative adversarial networks  18
Graphical generative adversarial networks
收藏 引用
Proceedings of the 32nd International Conference on Neural Information Processing systems
作者: Chongxuan Li Max Welling Jun Zhu Bo Zhang Department of Computer Science & Technology Institute for Artificial Intelligence BNRist Center THBI Lab State Key Lab for Intell. Tech. & Sys. Tsinghua University University of Amsterdam and the Canadian Institute for Advanced Research (CIFAR)
We propose Graphical Generative Adversarial Networks (Graphical-GAN) to model structured data. Graphical-GAN conjoins the power of Bayesian networks on compactly representing the dependency structures among random var...
来源: 评论
Scalable inference for nested chinese restaurant process topic models
arXiv
收藏 引用
arXiv 2017年
作者: Chen, Jianfei Zhu, Jun Lu, Jie Liu, Shixia Dept. of Comp. Sci. and Tech. TNList Lab State Key Lab for Intell. Tech. and Sys. Cbicr Center Tsinghua University Beijing100084 China School of Software TNList Lab State Key Lab for Intell. Tech. and Sys. Tsinghua University Beijing100084 China
Nested Chinese Restaurant Process (nCRP) topic models are powerful nonparametric Bayesian methods to extract a topic hierarchy from a given text corpus, where the hierarchical structure is automatically determined by ... 详细信息
来源: 评论
Riemannian Stein variational gradient descent for Bayesian inference
arXiv
收藏 引用
arXiv 2017年
作者: Liu, Chang Zhu, Jun Dept. of Comp. Sci. & Tech. TNList Lab Center for Bio-Inspired Computing Research State Key Lab for Intell. Tech. & Systems Tsinghua University Beijing China
We develop Riemannian Stein Variational Gradient Descent (RSVGD), a Bayesian inference method that generalizes Stein Variational Gradient Descent (SVGD) to Riemann manifold. The benefits are two-folds: (i) for inferen... 详细信息
来源: 评论
Population matching discrepancy and applications in deep learning  17
Population matching discrepancy and applications in deep lea...
收藏 引用
Proceedings of the 31st International Conference on Neural Information Processing systems
作者: Jianfei Chen Chongxuan Li Yizhong Ru Jun Zhu Dept. of Comp. Sci. & Tech. TNList Lab State Key Lab for Intell. Tech. & Sys. Tsinghua University Beijing China
A differentiable estimation of the distance between two distributions based on samples is important for many deep learning tasks. One such estimation is maximum mean discrepancy (MMD). However, MMD suffers from its se...
来源: 评论
Message passing stein variational gradient descent
arXiv
收藏 引用
arXiv 2017年
作者: Zhuo, Jingwei Liu, Chang Shi, Jiaxin Zhu, Jun Chen, Ning Zhang, Bo Dept. of Comp. Sci. and Tech. BNRist Center State Key Lab for Intell. Tech. and Sys. Thbi Lab Tsinghua University Beijing100084 China
Stein variational gradient descent (SVGD) is a re-cently proposed particle-based Bayesian inference method, which has attracted a lot of interest due to its remarkable approximation ability and particle efficiency com... 详细信息
来源: 评论
Smooth neighbors on teacher graphs for semi-supervised learning
arXiv
收藏 引用
arXiv 2017年
作者: Luo, Yucen Zhu, Jun Li, Mengxi Ren, Yong Zhang, Bo Dept. of Comp. Sci. & Tech. State Key Lab for Intell. Tech. & Sys. BNRist Lab Tsinghua University Department of Electronical Engineering Tsinghua University
The recently proposed self-ensembling methods have achieved promising results in deep semi-supervised learning, which penalize inconsistent predictions of unlabeled data under different perturbations. However, they on... 详细信息
来源: 评论
Triple generative adversarial nets  17
Triple generative adversarial nets
收藏 引用
Proceedings of the 31st International Conference on Neural Information Processing systems
作者: Chongxuan Li Kun Xu Jun Zhu Bo Zhang Dept. of Comp. Sci. & Tech. TNList Lab State Key Lab of Intell. Tech. & Sys. Center for Bio-Inspired Computing Research Tsinghua University Beijing China
Generative Adversarial Nets (GANs) have shown promise in image generation and semi-supervised learning (SSL). However, existing GANs in SSL have two problems: (1) the generator and the discriminator (i.e. the classifi...
来源: 评论
Towards robust detection of adversarial examples
arXiv
收藏 引用
arXiv 2017年
作者: Pang, Tianyu Du, Chao Dong, Yinpeng Zhu, Jun Departmeng of Computer Science and Technology Institute for Artificial Intelligence BNRist Center State Key Lab for Intell. Tech. and Sys. THBI Lab Tsinghua University Beijing China
Although the recent progress is substantial, deep learning methods can be vulnerable to the maliciously generated adversarial examples. In this paper, we present a novel training procedure and a thresholding test stra... 详细信息
来源: 评论