Complex lattices provide a versatile ground for fascinating quantum many-body physics. Here, we propose an exotic mechanics for generating orbital frustration in hexagonal lattices. We study two-component (pseudospin-...
详细信息
Complex lattices provide a versatile ground for fascinating quantum many-body physics. Here, we propose an exotic mechanics for generating orbital frustration in hexagonal lattices. We study two-component (pseudospin-12) Bose gases in p-orbital bands of two-dimensional hexagonal lattices, and find that the system exhibits previously untouched orbital frustration as a result of the interplay of spin and orbital degrees of freedom, in contrast to normal Ising-type orbital ordering of spinless p-orbital band bosons in two-dimensional hexagonal lattices. Based on the classification by symmetry analysis, we find the interplay of orbital frustration and strong interaction leads to exotic Mott and superfluid phases with spin-orbital intertwined orders, in spite of the complete absence of spin-orbital interaction in the Hamiltonian. Our study implies many-body correlations in a multiorbital setting could induce rich spin-orbital intertwined physics in complex lattice structures.
High sensitivity detection plays a vital role in science discoveries and technological applications. While intriguing methods utilizing collective many-body correlations and quantum entanglements have been developed i...
详细信息
Inorganic nanomaterials endowed with hierarchical chirality could open new horizons in physical theory and applications because of their fascinating properties. Here, we report chiral ZnO films coated on quartz substr...
详细信息
Inorganic nanomaterials endowed with hierarchical chirality could open new horizons in physical theory and applications because of their fascinating properties. Here, we report chiral ZnO films coated on quartz substrates with a hierarchical nanostructure ranging from atomic to micrometer scale. Three levels of hierarchical chirality exist in the ZnO films: helical ZnO crystalline structures that form primary helically coiled nanoplates, secondary helical stacking of these nanoplates, and tertiary nanoscale circinate aggregates formed by several stacked nanoplates. These films exhibited optical activity (OA) at 380 nm and in the range of 200–800 nm and created circularly polarized luminescence centered at 510 nm and Raman OA at 50–1400 cm −1 , which was attributed to electronic transitions, scattering, photoluminescent emission, and Raman scattering in a dissymmetric electric field. The unprecedented strong OA could be attributed to multiple light scattering and absorption‐enhanced light harvesting in the hierarchical structures.
A1 Functional advantages of cell-type heterogeneity in neural circuits Tatyana O. Sharpee A2 Mesoscopic modeling of propagating waves in visual cortex Alain Destexhe A3 Dynamics and biomarkers of mental disorders Mits...
A1 Functional advantages of cell-type heterogeneity in neural circuits Tatyana O. Sharpee A2 Mesoscopic modeling of propagating waves in visual cortex Alain Destexhe A3 Dynamics and biomarkers of mental disorders Mitsuo Kawato F1 Precise recruitment of spiking output at theta frequencies requires dendritic h-channels in multi-compartment models of oriens-lacunosum/moleculare hippocampal interneurons Vladislav Sekulić, Frances K. Skinner F2 Kernel methods in reconstruction of current sources from extracellular potentials for single cells and the whole brains Daniel K. Wójcik, Chaitanya Chintaluri, Dorottya Cserpán, Zoltán Somogyvári F3 The synchronized periods depend on intracellular transcriptional repression mechanisms in circadian clocks. Jae Kyoung Kim, Zachary P. Kilpatrick, Matthew R. Bennett, Kresimir Josić O1 Assessing irregularity and coordination of spiking-bursting rhythms in central pattern generators Irene Elices, David Arroyo, Rafael Levi, Francisco B. Rodriguez, Pablo Varona O2 Regulation of top-down processing by cortically-projecting parvalbumin positive neurons in basal forebrain Eunjin Hwang, Bowon Kim, Hio-Been Han, Tae Kim, James T. McKenna, Ritchie E. Brown, Robert W. McCarley, Jee Hyun Choi O3 Modeling auditory stream segregation, build-up and bistability James Rankin, Pamela Osborn Popp, John Rinzel O4 Strong competition between tonotopic neural ensembles explains pitch-related dynamics of auditory cortex evoked fields Alejandro Tabas, André Rupp, Emili Balaguer-Ballester O5 A simple model of retinal response to multi-electrode stimulation Matias I. Maturana, David B. Grayden, Shaun L. Cloherty, Tatiana Kameneva, Michael R. Ibbotson, Hamish Meffin O6 Noise correlations in V4 area correlate with behavioral performance in visual discrimination task Veronika Koren, Timm Lochmann, Valentin Dragoi, Klaus Obermayer O7 Input-location dependent gain modulation in cerebellar nucleus neurons Maria Psarrou, Maria Schilstra, Neil Davey, Benjamin Torben-Ni
暂无评论