Cross-linked polystyrene/glass fiber composites were fabricated using cross-linked polystyrene (CLPS) as matrix and E-glass fiber as the reinforcement. Surfaces of E-glass fibers were modified by vinyl triethoxysila...
详细信息
Cross-linked polystyrene/glass fiber composites were fabricated using cross-linked polystyrene (CLPS) as matrix and E-glass fiber as the reinforcement. Surfaces of E-glass fibers were modified by vinyl triethoxysilane (VTES), vinyl trimethoxysilane (VTMS) and γ-methacryloylpropyl trimethoxysilane (MPS). The treated glass fibers were analyzed by fourier transform infrared spectroscopy (FTIR). Dynamic mechanical thermal analysis (DMTA) and thermo-gravimetric analysis (TGA) were employed to investigate the effect of glass fibers surface modification on viscoelastic behavior and thermal properties. The morphology of fracture surfaces of various composites was observed by scanning electron microscopy (SEM). The results revealed that these coupling agents were connected to the surfaces of the fibers by chemical bonding. Dynamic mechanical properties as well as thermal stability of the composites were improved considerablely, but to varying degrees depending on the fiber modification. The diversities of improvement of properties were attributed to the different interfacial adhesion between CLPS matrix and the glass fibers.
Zinc oxide hexagonal tubular crystals were synthesized by direct microwave heating from ZnO powders within 5 min without any metal catalysts or transport agents. ZnO source materials were evaporated from the high-temp...
详细信息
Zinc oxide hexagonal tubular crystals were synthesized by direct microwave heating from ZnO powders within 5 min without any metal catalysts or transport agents. ZnO source materials were evaporated from the high-temperature zone in an enclosure, and crystals were grown on the self-source substrate in an appropriate condition. The ZnO vapor formed in the high-temperature zone can deposit and grow on the powders located in the low-temperature zone to form crystals. The scanning electron microscopy (SEM) reveals that these products are hexagonal tube crystals with 80 ~rn in diameter and 250 μm in length, having a well faceted end and side surface. A possible growth mechanism and the influence of reaction temperature on the formation of crystalline ZnO hexagonal tubes were presented. The photoluminescence (PL) exhibits strong ultraviolet emission at room temperature, indicating the potential applications in short-wave light-emitting photonic devices.
A facile and large-scale synthesis method to fabricate silver hollow microspheres with controllable morphologies and shell thickness is described using low-cost glass microspheres as templates. The method mainly invol...
详细信息
A facile and large-scale synthesis method to fabricate silver hollow microspheres with controllable morphologies and shell thickness is described using low-cost glass microspheres as templates. The method mainly involves two steps of the preparation of silver-coated glass microsphere core–shell particles by a controllable liquid reduced reaction of Ag[(NH3)2]+ solution, which only produces silver nanoparticles anchored on the surface of the thiolated glass microsphere templates, and the removal of glass microspheres by wet chemical etching with HF solution. The products are well characterized by field emitted scanning electron microscopy (SEM), transmitted electron microscopy (TEM), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) etc. The as-prepared core-shell particles and hollow particles have even and compact silver shells. The electromagnetic shielding coatings based on the silver hollow microspheres are demonstrated to have high conductivity, excellent shielding effectiveness and long durability, suggesting that the silver hollow microspheres obtained here are a novel light-weight electromagnetic shielding filler and will have extensive applications in the electromagnetic compatibility fields.
Highly sensitive and selective nanosensor for labile iron pool (LIP) determination, has been designed and prepared by immobilization of Fluoresceine–Desferrioxamine (Fl–DFO), a bifunctional fluoro-siderophore probe ...
详细信息
Highly sensitive and selective nanosensor for labile iron pool (LIP) determination, has been designed and prepared by immobilization of Fluoresceine–Desferrioxamine (Fl–DFO), a bifunctional fluoro-siderophore probe molecule with great affinity for iron ions (pK f = 30.7), into highly ordered mesoporous silica structure. Different immobilization methods of Fl–DFO molecules, such as their encapsulation in surfactant micelles used as templating agents for the synthesis of mesoporous silica, direct impregnation into the mesochannels of as-synthesized mesoporous silica and their surface anchoring by covalent binding with propylamine groups implanted by post-synthesis on the internal surface of mesochannels, have been explored. Each nanohybrid has been fully characterized by small angle XRD, TEM, SEM, solid state 29 Si and 13 C MAS NMR and N 2 adsorption–desorption. The fluorescence properties of nanohybrids obtained have been correlated with the immobilization methods, generating interesting information concerning the localization of Fl–DFO molecules in the channels of mesoporous silica. The leaching of Fl–DFO molecules from mesoporous materials has been investigated. The nanosensor prepared by surface anchoring of Fl–DFO at the internal surface of mesochannels showed high performances with no leaching effect and high sensitivity in regards to its responses to ferric ions. Its fluorescence intensity decreased as soon as first Fe III ions are in contact with this nanosensor. A linear relationship between the fluorescence intensity and the ferric ions concentration was observed in low micromolar range. The selectivity of this nanosensor towards other metal ions has also been tested and shown its high affinity to ferric ions. This study can allow the design of a stable, portable, simple, regenerable and cost-effective nanosensor highly sensitive and selective for iron ions with detection limits in the range of cellular LIP in cells, e.g. lower micromolar range.
A 3-D finite element model of two-stage thermoelectric generator based on low-temperature thermoelectric material bismuth-telluride and medium-temperature thermoelectric material skutterudites is established. Based on...
详细信息
ISBN:
(纸本)9781424480364
A 3-D finite element model of two-stage thermoelectric generator based on low-temperature thermoelectric material bismuth-telluride and medium-temperature thermoelectric material skutterudites is established. Based on the formal model, structural optimization of the two-stage thermoelectric generator is carried out. Results show that, reasonable design of the structure of two-stage thermoelectric generator can take full advantage of the characteristics of thermoelectric materials and effectively improve the performance of power generation. If contact resistance and all heat losses are neglected, the conversion efficiency of the two-stage thermoelectric generator can reach a value of 17.02%.
ZnO/SnO2 composite films were prepared on electro-conductive glass substrate by an electrophoretic deposition (EPD) method and were further characterized by SEM and XRD. The results showed that the optimum deposition ...
详细信息
ZnO/SnO2 composite films were prepared on electro-conductive glass substrate by an electrophoretic deposition (EPD) method and were further characterized by SEM and XRD. The results showed that the optimum deposition time for obtaining compact and uniform films is about 20min, and these films with 20 min deposition min showed the highest photocatalytic activity (0.016 min-1) for photocatalytic decolorization of Rhodamine-B aqueous solution. A hetero-junction structure composed of ZnO and SnO2 is formed and makes it easier for exitons to be separated and result in a higher activity. Moreover, the effects of calcination temperature on the photocatalytic activity of ZnO/SnO2 composite films were further investigated. The decoloring rate will be decreased as raising the calcination temperature, and at 300°C, the ZnO/SnO2 composite films showed the highest photocatalytic activity.
The performance of composite ceramic armor penetrated by rod projectile was studied by both numerical simulation and *** penetration and damage mechanisms of the projectile-armor after high-speed collision were also o...
详细信息
The performance of composite ceramic armor penetrated by rod projectile was studied by both numerical simulation and *** penetration and damage mechanisms of the projectile-armor after high-speed collision were also observed by high-speed *** experimental results showed that the ballistic performance of composite ceramic armor was highly affected by the density,hardness and toughness of bulletproof *** flow stress of the failed bulletproof ceramic is not only related to the pressure but also related to the strain *** phenomenological method based on Bodner-Partom ceramic model was introduced to derive the growth rate of *** simulation results show good agreement with the experimental results.
Dense SnO2-based electrode ceramics have extensive application prospect in glass electric-melting industry due to the excellent electrically-conductive and chemical property in high temperatures and oxidation environm...
Dense SnO2-based electrode ceramics have extensive application prospect in glass electric-melting industry due to the excellent electrically-conductive and chemical property in high temperatures and oxidation environment. In this paper, dense SnO2-based electrode ceramics doped with MnO2 and Sb2O3 were prepared by pressureless sintering method and the corrosion rate in soda-lime glass liquid as well as the microstructure evolution was mainly investigated. The results suggested that SnO2-based ceramics had good corrosion resistance, and the minimum value was only 2.54×10−4 mm/h when MnO2 content is 1.0% and Sb2O3 content is 0.1%. Composition Elements of Glass liquid were detected in the grain boundary and some intergranular pores. It was found that SnO2 grains remained unchanged, whereas MnO2 was easily dissolved into molten glass liquid. SnO2-based electrode ceramics with dense structure and few amounts of additives had excellent corrosion resistance to the molten glass.
The effects of activated sintering technology of H2 atmosphere sintering on the microstructure and properties of W-15Cu alloy using ultrafine W-15Cu composite powder fabricated by spray drying calcining-continuous red...
详细信息
The effects of activated sintering technology of H2 atmosphere sintering on the microstructure and properties of W-15Cu alloy using ultrafine W-15Cu composite powder fabricated by spray drying calcining-continuous reduction technology were *** experimental results showed that W-15Cu alloy,consolidated by activated sintering technology of H2 atmosphere sintering for 1 h at 1300 ℃,with 98.5 % relative density,transverse rupture strength 1218 MPa,Vickers hardness HV0.5 378,average grain size about 1.2 μm and thermal conductivity 192 W/m·K,was *** comparison to the normal sintering process,activated sintering process to W-15Cu alloy could be achieved at lower sintering ***,better properties in activated sintered compacts were obtained,and activated sintering process resulted in finer microstructure and excellent properties.
Low or zero thermal expansion porous ceramics are required for several applications. In this work near zero thermal expansion porous ceramics were fabricated by using SiC and ZrW2O8 as positive and negative thermal ex...
详细信息
Low or zero thermal expansion porous ceramics are required for several applications. In this work near zero thermal expansion porous ceramics were fabricated by using SiC and ZrW2O8 as positive and negative thermal expansion materials, respectively, bonded by soda lime glass. The mixture of SiC, ZrW2O8 and soda lime glass was sintered by Pulsed Electric Current Sintering (PECS, or sometimes called Spark Plasma Sintering, SPS) at 700°C. Sintered samples with ZrW2O 8 particle size smaller than 25 μm have high thermal expansion coefficient, because ZrW2O8 has the reaction with soda lime glass to form Na2ZrW3O12 during sintering process. The reaction between soda lime glass and ZrW2O8 is reduced by increasing particle size of ZrW2O8. Sintered sample with ZrW2O8 particle size 45-90 μm shows near zero thermal expansion.
暂无评论