咨询与建议

限定检索结果

文献类型

  • 74 篇 会议
  • 65 篇 期刊文献

馆藏范围

  • 139 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 97 篇 工学
    • 37 篇 计算机科学与技术...
    • 30 篇 信息与通信工程
    • 26 篇 软件工程
    • 25 篇 电子科学与技术(可...
    • 18 篇 电气工程
    • 15 篇 机械工程
    • 15 篇 仪器科学与技术
    • 12 篇 控制科学与工程
    • 12 篇 化学工程与技术
    • 11 篇 材料科学与工程(可...
    • 9 篇 安全科学与工程
    • 6 篇 动力工程及工程热...
    • 6 篇 生物工程
    • 5 篇 环境科学与工程(可...
    • 4 篇 光学工程
    • 4 篇 交通运输工程
    • 4 篇 生物医学工程(可授...
  • 61 篇 理学
    • 25 篇 物理学
    • 19 篇 数学
    • 14 篇 化学
    • 9 篇 生物学
    • 9 篇 统计学(可授理学、...
    • 7 篇 系统科学
    • 6 篇 大气科学
  • 13 篇 医学
    • 10 篇 临床医学
    • 7 篇 基础医学(可授医学...
  • 12 篇 管理学
    • 9 篇 管理科学与工程(可...
    • 4 篇 工商管理
    • 4 篇 图书情报与档案管...
  • 3 篇 法学
  • 2 篇 文学
  • 2 篇 历史学
  • 1 篇 经济学
  • 1 篇 教育学
  • 1 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 4 篇 blind source sep...
  • 4 篇 instruments
  • 4 篇 feature extracti...
  • 4 篇 synchronization
  • 4 篇 source separatio...
  • 3 篇 timbre
  • 3 篇 compressed sensi...
  • 3 篇 interference
  • 3 篇 gallium nitride
  • 3 篇 costs
  • 3 篇 correlation
  • 3 篇 estimation
  • 3 篇 training
  • 2 篇 helium
  • 2 篇 clean air
  • 2 篇 deep learning
  • 2 篇 threshold voltag...
  • 2 篇 synergetic roadm...
  • 2 篇 transformers
  • 2 篇 battery manageme...

机构

  • 8 篇 school of inform...
  • 7 篇 state key labora...
  • 6 篇 key laboratory o...
  • 5 篇 state key labora...
  • 4 篇 state key labora...
  • 4 篇 school of inform...
  • 4 篇 state key labora...
  • 3 篇 china cdc key la...
  • 3 篇 state key lab of...
  • 3 篇 shanxi key labor...
  • 3 篇 school of inform...
  • 3 篇 national defense...
  • 3 篇 key laboratory o...
  • 3 篇 school of teleco...
  • 3 篇 key laboratory o...
  • 3 篇 school of inform...
  • 3 篇 key laboratory o...
  • 3 篇 state key lab. o...
  • 3 篇 communication un...
  • 3 篇 institute of per...

作者

  • 7 篇 sang shengbo
  • 6 篇 han dan
  • 6 篇 liu jingyu
  • 5 篇 wei jiang
  • 5 篇 he xiuli
  • 5 篇 jingyu liu
  • 5 篇 li donghui
  • 4 篇 jiang wei
  • 4 篇 zhong haiwang
  • 4 篇 zhao zhijin
  • 4 篇 yi liu
  • 4 篇 yang le
  • 4 篇 le yang
  • 3 篇 xie xianzhong
  • 3 篇 lei shen
  • 3 篇 ruan guangchun
  • 3 篇 li hongwei
  • 3 篇 qiang zhang
  • 3 篇 liang hua
  • 3 篇 kebin he

语言

  • 124 篇 英文
  • 8 篇 其他
  • 7 篇 中文
检索条件"机构=State Key Lab of Information Control Technology in Communication System"
139 条 记 录,以下是111-120 订阅
排序:
Model Predictive control for Household Energy Management based on Individual Habit
Model Predictive Control for Household Energy Management bas...
收藏 引用
第25届中国控制与决策会议
作者: keyu Long Zaiyue Yang State Key Lab. of Industrial Control Technology Zhejiang University Key Laboratory of System Control and Information Processing Ministry of Education
This paper focuses on the load shifting problem in a household scenario with a large-capacity battery. We propose a novel Model Predictive control (MPC) framework to control the charge/discharge power of battery, he... 详细信息
来源: 评论
26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 Antwerp, Belgium. 15-20 July 2017 Abstracts
收藏 引用
BMC NEUROSCIENCE 2017年 第SUPPL 1期18卷 95-176页
作者: [Anonymous] Department of Neuroscience Yale University New Haven CT 06520 USA Department Physiology & Pharmacology SUNY Downstate Brooklyn NY 11203 USA NYU School of Engineering 6 MetroTech Center Brooklyn NY 11201 USA Departament de Matemàtica Aplicada Universitat Politècnica de Catalunya Barcelona 08028 Spain Institut de Neurobiologie de la Méditerrannée (INMED) INSERM UMR901 Aix-Marseille Univ Marseille France Center of Neural Science New York University New York NY USA Aix-Marseille Univ INSERM INS Inst Neurosci Syst Marseille France Laboratoire de Physique Théorique et Modélisation CNRS UMR 8089 Université de Cergy-Pontoise 95300 Cergy-Pontoise Cedex France Department of Mathematics and Computer Science ENSAT Abdelmalek Essaadi’s University Tangier Morocco Laboratory of Natural Computation Department of Information and Electrical Engineering and Applied Mathematics University of Salerno 84084 Fisciano SA Italy Department of Medicine University of Salerno 84083 Lancusi SA Italy Dipartimento di Fisica Università degli Studi Aldo Moro Bari and INFN Sezione Di Bari Italy Data Analysis Department Ghent University Ghent Belgium Coma Science Group University of Liège Liège Belgium Cruces Hospital and Ikerbasque Research Center Bilbao Spain BIOtech Department of Industrial Engineering University of Trento and IRCS-PAT FBK 38010 Trento Italy Department of Data Analysis Ghent University Ghent 9000 Belgium The Wellcome Trust Centre for Neuroimaging University College London London WC1N 3BG UK Department of Electronic Engineering NED University of Engineering and Technology Karachi Pakistan Blue Brain Project École Polytechnique Fédérale de Lausanne Lausanne Switzerland Departement of Mathematics Swansea University Swansea Wales UK Laboratory for Topology and Neuroscience at the Brain Mind Institute École polytechnique fédérale de Lausanne Lausanne Switzerland Institute of Mathematics University of Aberdeen Aberdeen Scotland UK Department of Integrativ
来源: 评论
25th Annual Computational Neuroscience Meeting CNS-2016, Seogwipo City, South Korea, July 2-7, 2016 Abstracts
收藏 引用
BMC NEUROSCIENCE 2016年 第1期17卷 1-112页
作者: [Anonymous] Computational Neurobiology Laboratory The Salk Institute for Biological Studies San Diego USA UNIC CNRS Gif sur Yvette France The European Institute for Theoretical Neuroscience (EITN) Paris France ATR Computational Neuroscience Laboratories Kyoto Japan Krembil Research Institute University Health Network Toronto Canada Department of Physiology University of Toronto Toronto Canada Department of Medicine (Neurology) University of Toronto Toronto Canada Department of Physics University of New Hampshire Durham USA Department of Neurophysiology Nencki Institute of Experimental Biology Warsaw Poland Department of Theory Wigner Research Centre for Physics of the Hungarian Academy of Sciences Budapest Hungary Department of Mathematical Sciences KAIST Daejoen Republic of Korea Department of Mathematics University of Houston Houston USA Department of Biochemistry & Cell Biology and Institute of Biosciences and Bioengineering Rice University Houston USA Department of Biology and Biochemistry University of Houston Houston USA Grupo de Neurocomputación Biológica Dpto. de Ingeniería Informática Escuela Politécnica Superior Universidad Autónoma de Madrid Madrid Spain Department of Biological Sciences University of Southern California Los Angeles USA Center for Neuroscience Korea Institute of Science and Technology Seoul South Korea Department of Neurology Albert Einstein College of Medicine Bronx USA Center for Neuroscience KIST Seoul South Korea Department of Neuroscience University of Science and Technology Daejon South Korea Systems Neuroscience Group QIMR Berghofer Medical Research Institute Herston Australia Department of Psychology Yonsei University Seoul South Korea Department of Psychiatry Kyung Hee University Hospital at Gangdong Seoul South Korea Department of Psychiatry Veterans Administration Boston Healthcare System and Harvard Medical School Brockton USA Department of Electrical and Electronic Engineering The University of Melbourne Parkvil
A1 Functional advantages of cell-type heterogeneity in neural circuits Tatyana O. Sharpee A2 Mesoscopic modeling of propagating waves in visual cortex Alain Destexhe A3 Dynamics and biomarkers of mental disorders Mits...
来源: 评论
Nonreciprocal transmission through grating with magneto-optical substrate
Nonreciprocal transmission through grating with magneto-opti...
收藏 引用
Nanophotonics, Nanoelectronics and Nanosensor, N3 2013
作者: Zhu, Haibin Li, Feng Liu, Yajie Jiang, Chun Tang, Bin Zang, Xiaofei College of Mathematics Physics and Information Engineering Jiaxing University Jiaxing 314001 China State Key Laboratory of Advanced Optical Communication System and Networks Shanghai Jiao Tong University Shanghai 200240 China School of Mathematics and Physics Changzhou University Changzhou 213164 China Engineering Research Center of Optical Instrument and System Ministry of Education and Shanghai Key Lab of Modern Optical System University of Shanghai for Science and Technology Shanghai 200093 China
A double-layer grating structure is proposed, which can show nonreciprocal transmission in near-IR frequency range. The structure is composed of metallic grating with magneto-optical substrate. The nonreciprocity depe... 详细信息
来源: 评论
Direct multi-hop time synchronization with constructive interference
Direct multi-hop time synchronization with constructive inte...
收藏 引用
11th ACM/IEEE Conference on information Processing in Sensing Networks, IPSN'12
作者: Wang, Yin Pan, Gaofeng Huang, Zhiyu MOE Key Lab. for Information System Security School of Software TNLIST China Science and Technology on Communication Information Security Control Laboratory China Institute of Software Chinese Academy of Sciences China
Multi-hop time synchronization in wireless sensor networks (WSNs) is often time-consuming and error-prone due to random time-stamp delays for MAC layer access and unstable clocks of intermediate nodes. Constructive in... 详细信息
来源: 评论
Poster abstract: Direct multi-hop time synchronization with constructive interference
Poster abstract: Direct multi-hop time synchronization with ...
收藏 引用
International Symposium on information Processing in Sensor Networks (IPSN)
作者: Yin Wang Gaofeng Pan Zhiyu Huang MOE Key Lab for Information System Security TNLIST Tsinghua University Science and technology on communication information security control laboratory Chinese Academy of Sciences
Multi-hop time synchronization in wireless sensor networks (WSNs) is often time-consuming and error-prone due to random time-stamp delays for MAC layer access and unstable clocks of intermediate nodes. Constructive in... 详细信息
来源: 评论
Distributed multi-agent Q-learning for joint channel allocation and power control in cognitive radio networks
收藏 引用
Journal of Computational information systems 2012年 第17期8卷 7071-7078页
作者: Boumediene, Latifa Gao, Zhenguo Liu, Sheng College of Automation Harbin Engineering University Harbin 150001 China Key Laboratory of System Control and Information Processing Ministry of Education Shanghai 200240 China State Key Lab. for Novel Software Technology Nanjing University Nanjing 210093 China
This paper deals with the resource allocation in completely distributed cognitive radio network. We propose a form of real-time multi-agent distributed reinforcement learning, which is known as Q-learning, to allow th... 详细信息
来源: 评论
A fast sparsity adaptive matching pursuit algorithm for compressed sensing
A fast sparsity adaptive matching pursuit algorithm for comp...
收藏 引用
2011 International Conference on Automation and Robotics, ICAR 2011
作者: Ma, Chun-Hui Xu, Chun-Yun Shen, Lei Zheng, Shi-Lian Telecommunication School Hangzhou Dianzi University Zhejian 310018 China State Key Lab. of Information Control Technology in Communication System No.36 Research Institute Electronic Technology Corporation Jiaxing 314001 China
Sparsity adaptive matching pursuit algorithm (SAMP) is a compressed sensing signal reconstruction algorithm with good performance. However, as the support set expands one time, the backward pursuit should be processed... 详细信息
来源: 评论
On energy-efficient trap coverage in wireless sensor networks
On energy-efficient trap coverage in wireless sensor network...
收藏 引用
2011 32nd IEEE Real-Time systems Symposium, RTSS 2011
作者: Li, Junkun Chen, Jiming He, Shibo He, Tian Gu, Yu Sun, Youxian State Key Lab. of Industrial Control Technology Zhejiang University China Computer Science and Engineering University of Minnesota United States Pillar of Information System Technology and Design Singapore University of Technology and Design Singapore Singapore
In wireless sensor networks (WSNs), trap coverage has recently been proposed to tradeoff between the availability of sensor nodes and sensing performance. It offers an efficient framework to tackle the challenge of li... 详细信息
来源: 评论
A new variable step size NLMS algorithm based on decorrelation for second-order Volterra filter
A new variable step size NLMS algorithm based on decorrelati...
收藏 引用
2011 International Conference on Automation and Robotics, ICAR 2011
作者: Zhao, Zhijin Yan, Pingping Shen, Lei Telecommunication School Hangzhou Dianzi University Zhejian 310018 China State Key Lab. of Information Control and Security Technology in Communication No. 36 Research Institute China Electronic Technology Corporation Jiaxing 314001 China
When the input signals are strongly correlated, the adaptive algorithm performance of Volterra filter deteriorates. Meanwhile, the correlativity of linear input signals of Volterra filter is different from that of non... 详细信息
来源: 评论