咨询与建议

限定检索结果

文献类型

  • 1,263 篇 会议
  • 1,148 篇 期刊文献

馆藏范围

  • 2,411 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,705 篇 工学
    • 811 篇 计算机科学与技术...
    • 635 篇 软件工程
    • 337 篇 电子科学与技术(可...
    • 307 篇 电气工程
    • 304 篇 控制科学与工程
    • 303 篇 信息与通信工程
    • 200 篇 机械工程
    • 195 篇 化学工程与技术
    • 169 篇 仪器科学与技术
    • 167 篇 材料科学与工程(可...
    • 156 篇 生物工程
    • 143 篇 光学工程
    • 127 篇 生物医学工程(可授...
    • 119 篇 动力工程及工程热...
    • 65 篇 冶金工程
    • 64 篇 力学(可授工学、理...
    • 59 篇 安全科学与工程
    • 56 篇 土木工程
    • 56 篇 交通运输工程
  • 984 篇 理学
    • 376 篇 物理学
    • 375 篇 数学
    • 202 篇 化学
    • 184 篇 生物学
    • 107 篇 统计学(可授理学、...
    • 65 篇 系统科学
  • 294 篇 管理学
    • 161 篇 管理科学与工程(可...
    • 135 篇 图书情报与档案管...
    • 51 篇 工商管理
  • 97 篇 医学
    • 83 篇 临床医学
    • 52 篇 基础医学(可授医学...
  • 31 篇 法学
  • 28 篇 农学
  • 17 篇 经济学
  • 11 篇 军事学
  • 5 篇 教育学
  • 4 篇 艺术学
  • 3 篇 文学
  • 1 篇 哲学

主题

  • 45 篇 semantics
  • 32 篇 machine learning
  • 32 篇 training
  • 26 篇 deep learning
  • 24 篇 feature extracti...
  • 21 篇 computational mo...
  • 20 篇 reinforcement le...
  • 20 篇 accuracy
  • 20 篇 data models
  • 19 篇 neural networks
  • 17 篇 object detection
  • 16 篇 three-dimensiona...
  • 15 篇 knowledge graph
  • 15 篇 recording
  • 15 篇 computer vision
  • 14 篇 decoding
  • 14 篇 visualization
  • 13 篇 safety
  • 13 篇 convolution
  • 13 篇 switches

机构

  • 75 篇 university of ch...
  • 50 篇 college of compu...
  • 49 篇 center of materi...
  • 49 篇 state key labora...
  • 49 篇 center for excel...
  • 45 篇 2020 x-lab shang...
  • 43 篇 tianqiao and chr...
  • 40 篇 state key labora...
  • 38 篇 school of gradua...
  • 38 篇 guangdong instit...
  • 38 篇 the state key la...
  • 33 篇 institute for ar...
  • 32 篇 guangdong provin...
  • 31 篇 school of artifi...
  • 30 篇 the coai group d...
  • 29 篇 department of co...
  • 28 篇 neuroxess co. lt...
  • 27 篇 state key lab on...
  • 23 篇 state key labora...
  • 23 篇 state key lab. o...

作者

  • 90 篇 huang minlie
  • 43 篇 wu xinyu
  • 38 篇 sun maosong
  • 32 篇 liu zhiyuan
  • 31 篇 chen enhong
  • 28 篇 pan gang
  • 24 篇 tiger h. tao
  • 22 篇 xiaoling wei
  • 22 篇 liuyang sun
  • 21 篇 sang shengbo
  • 20 篇 tao tiger h.
  • 20 篇 zhu xiaoyan
  • 19 篇 tang huajin
  • 19 篇 liu qi
  • 19 篇 xu tong
  • 19 篇 zhitao zhou
  • 18 篇 zheng qian
  • 18 篇 cui zhihua
  • 18 篇 guan jian
  • 17 篇 xinyu wu

语言

  • 2,177 篇 英文
  • 154 篇 其他
  • 79 篇 中文
检索条件"机构=State Key Lab of Intelligence Technology and System"
2411 条 记 录,以下是21-30 订阅
排序:
Traj-LLM: A New Exploration for Empowering Trajectory Prediction With Pre-Trained Large Language Models
IEEE Transactions on Intelligent Vehicles
收藏 引用
IEEE Transactions on Intelligent Vehicles 2024年 1-14页
作者: Lan, Zhengxing Liu, Lingshan Fan, Bo Lv, Yisheng Ren, Yilong Cui, Zhiyong School of Transportation Science and Engineering Beihang University Beijing China Beijing Key Laboratory of Traffic Engineering College of Metropolitan Transportation Beijing University of Technology Beijing China State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences Beijing China School of Transportation Science and Engineering State Key Lab of Intelligent Transportation System Beihang University Beijing China
Predicting the future trajectories of dynamic traffic actors is a cornerstone task in autonomous driving. Though existing notable efforts have resulted in impressive performance improvements, a gap persists in scene c... 详细信息
来源: 评论
Adversarial Training-Aided Time-Varying Channel Prediction for TDD/FDD systems
收藏 引用
China Communications 2023年 第6期20卷 100-115页
作者: Zhen Zhang Yuxiang Zhang Jianhua Zhang Feifei Gao State Key Lab of Networking and Switching Technology Beijing University of Posts and TelecommunicationsBeijing 100876China Institute for Artificial Intelligence Tsinghua UniversityBeijing 100084China
In this paper, a time-varying channel prediction method based on conditional generative adversarial network(CPcGAN) is proposed for time division duplexing/frequency division duplexing(TDD/FDD) systems. CPc GAN utiliz... 详细信息
来源: 评论
MixCon: A Hybrid Architecture for Efficient and Adaptive Sequence Modeling  27
MixCon: A Hybrid Architecture for Efficient and Adaptive Seq...
收藏 引用
27th European Conference on Artificial intelligence, ECAI 2024
作者: Xu, Xin Lin, Zhouchen State Key Lab of General Artificial Intelligence School of Intelligence Science and Technology Peking University China Institute for Artificial Intelligence Peking University China Guangdong Guangzhou China
Sequence modeling is a critical task in various domains such as natural language processing, speech recognition, and time series analysis. The existing models still face challenges in capturing long-range dependencies... 详细信息
来源: 评论
SpikingMiniLM: energy-efficient spiking transformer for natural language understanding
收藏 引用
Science China(Information Sciences) 2024年 第10期67卷 115-128页
作者: Jiayu ZHANG Jiangrong SHEN Zeke WANG Qinghai GUO Rui YAN Gang PAN Huajin TANG College of Computer Science and Technology Zhejiang University The State Key Lab of Brain-Machine Intelligence Zhejiang University Collaborative Innovation Center of Artificial Intelligence Zhejiang University Advanced Computing and Storage Laboratory Huawei Technologies Co. Ltd. College of Computer Science and Technology Zhejiang University of Technology MOE Frontier Science Center for Brain Science and Brain-Machine Integration Zhejiang University
In the era of large-scale pretrained models, artificial neural networks(ANNs) have excelled in natural language understanding(NLU) tasks. However, their success often necessitates substantial computational resourc... 详细信息
来源: 评论
Squeezing More Past Knowledge for Online Class-Incremental Continual Learning
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2023年 第3期10卷 722-736页
作者: Da Yu Mingyi Zhang Mantian Li Fusheng Zha Junge Zhang Lining Sun Kaiqi Huang the State Key Laboratory of Robotics and System Harbin Institute of Technology(HIT)Harbin 150080China Center for Research on Intelligent System and Engineering Institute of AutomationChinese Academy of Sciences(CASIA)Beijing 100190 School of Artificial Intelligence University of Chinese Academy of SciencesBeijing 100049China Center for Research on Intelligent System and Engineering Institute of AutomationChinese Academy of Sciences(CASIA)Beijing 100190the School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijing 100049 the CAS Center for Excellence in Brain Science and Intelligence Technology Shanghai 200031China IEEE
Continual learning(CL)studies the problem of learning to accumulate knowledge over time from a stream of data.A crucial challenge is that neural networks suffer from performance degradation on previously seen data,kno... 详细信息
来源: 评论
Decomposing Visual and Semantic Correlations for Both Fully Supervised and Few-Shot Image Classification
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial intelligence 2024年 第4期5卷 1658-1668页
作者: Zhang, Chunjie Zheng, Xiaolong Beijing Jiaotong University Institute of Information Science Beijing100044 China Beijing Jiaotong University Beijing Key Laboratory of Advanced Information Science and Network Technology Beijing100044 China University of Chinese Academy of Sciences State Key Laboratory of Multimodal Artificial Intelligence Systems The State of Key Laboratory of Management and Control for Complex System Institute of Automation Chinese Academy of Sciences School of Artificial Intelligence Beijing100190 China
Most image classification methods are designed to either boost the classification accuracies with abundant supervision, or cope with the shortage of supervision information. This is often achieved by using the visual ... 详细信息
来源: 评论
STUDY ON THE PROPERTIES OF COPPER-CHROMIUM ALLOY CONTACTS AFTER ELEMENTAL DOPING
STUDY ON THE PROPERTIES OF COPPER-CHROMIUM ALLOY CONTACTS AF...
收藏 引用
2024 China HVDC and Power Electronics Annual Meeting of Chinese Society of Electrical Engineering, DCPE 2024
作者: Liu, Tingting Fu, Xinye Li, Zhe Feng, Dawei School of Electrical Engineering State Key Lab of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin China
With the continuous expansion and complexity of the load scale of the power grid, the stability of the power grid is facing increasingly severe challenges. To adapt to this trend, the voltage level of the grid is grad... 详细信息
来源: 评论
Do LLMs Overcome Shortcut Learning? An Evaluation of Shortcut Challenges in Large Language Models
Do LLMs Overcome Shortcut Learning? An Evaluation of Shortcu...
收藏 引用
2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
作者: Yuan, Yu Zhao, Lili Zhang, Kai Zheng, Guangting Liu, Qi State Key Lab of Cognitive Intelligence University of Science and Technology of China China School of Computer Science and Technology University of Science and Technology of China China
Large Language Models (LLMs) have shown remarkable capabilities in various natural language processing tasks. However, LLMs may rely on dataset biases as shortcuts for prediction, which can significantly impair their ... 详细信息
来源: 评论
Microcosmic mechanism and correction of moisture effect on furfural diffusion and equilibrium in oil‐paper insulation
收藏 引用
High Voltage 2023年 第4期8卷 772-780页
作者: Dawei Feng Ge Chen Yuandi Lin Ruijin Liao Dayong Yuan State Key Lab of Reliability and Intelligence of Electrical Equipment School of Electrical EngineeringHebei University of TechnologyTianjinChina The MOE Key Laboratory of Special Machine and High Voltage Apparatus School of Electrical EngineeringShenyang University of TechnologyShenyangChina State Grid Jiangsu Electric Power Company Research Institute NanjingChina State Key Laboratory of Power Transmission Equipment&System Security and New Technology School of Electrical EngineeringChongqing UniversityChongqingChina TBEA Shenyang Transformer Group Co. LtdShenyangChina
Furfural content in oil is considered as an effective parameter to evaluate the ageing state of oil-immersed *** previous thermal ageing experiments at 130℃,we found that moisture increment in oil-paper system makes ... 详细信息
来源: 评论
U-DiTs: Downsample Tokens in U-Shaped Diffusion Transformers  38
U-DiTs: Downsample Tokens in U-Shaped Diffusion Transformers
收藏 引用
38th Conference on Neural Information Processing systems, NeurIPS 2024
作者: Tian, Yuchuan Tu, Zhijun Chen, Hanting Hu, Jie Xu, Chao Wang, Yunhe State Key Lab of General AI School of Intelligence Science and Technology Peking University China Huawei Noah's Ark Lab Canada
Diffusion Transformers (DiTs) introduce the transformer architecture to diffusion tasks for latent-space image generation. With an isotropic architecture that chains a series of transformer blocks, DiTs demonstrate co...
来源: 评论