咨询与建议

限定检索结果

文献类型

  • 1,269 篇 会议
  • 1,152 篇 期刊文献

馆藏范围

  • 2,421 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,708 篇 工学
    • 811 篇 计算机科学与技术...
    • 646 篇 软件工程
    • 338 篇 电子科学与技术(可...
    • 311 篇 电气工程
    • 309 篇 信息与通信工程
    • 297 篇 控制科学与工程
    • 197 篇 机械工程
    • 193 篇 化学工程与技术
    • 171 篇 仪器科学与技术
    • 165 篇 材料科学与工程(可...
    • 154 篇 生物工程
    • 143 篇 光学工程
    • 127 篇 生物医学工程(可授...
    • 118 篇 动力工程及工程热...
    • 65 篇 冶金工程
    • 63 篇 力学(可授工学、理...
    • 60 篇 交通运输工程
    • 60 篇 安全科学与工程
    • 55 篇 土木工程
  • 977 篇 理学
    • 376 篇 物理学
    • 374 篇 数学
    • 201 篇 化学
    • 182 篇 生物学
    • 107 篇 统计学(可授理学、...
    • 64 篇 系统科学
  • 298 篇 管理学
    • 165 篇 管理科学与工程(可...
    • 137 篇 图书情报与档案管...
    • 53 篇 工商管理
  • 96 篇 医学
    • 84 篇 临床医学
    • 51 篇 基础医学(可授医学...
  • 31 篇 法学
  • 28 篇 农学
  • 17 篇 经济学
  • 11 篇 军事学
  • 5 篇 教育学
  • 4 篇 艺术学
  • 3 篇 文学
  • 1 篇 哲学

主题

  • 46 篇 semantics
  • 33 篇 machine learning
  • 33 篇 training
  • 28 篇 deep learning
  • 25 篇 feature extracti...
  • 21 篇 computational mo...
  • 20 篇 reinforcement le...
  • 20 篇 neural networks
  • 20 篇 accuracy
  • 20 篇 data models
  • 16 篇 object detection
  • 16 篇 three-dimensiona...
  • 16 篇 recording
  • 16 篇 computer vision
  • 15 篇 knowledge graph
  • 15 篇 visualization
  • 14 篇 decoding
  • 13 篇 safety
  • 13 篇 convolution
  • 13 篇 switches

机构

  • 77 篇 university of ch...
  • 53 篇 center for excel...
  • 52 篇 center of materi...
  • 52 篇 state key labora...
  • 52 篇 college of compu...
  • 47 篇 2020 x-lab shang...
  • 46 篇 tianqiao and chr...
  • 40 篇 school of gradua...
  • 40 篇 guangdong instit...
  • 39 篇 state key labora...
  • 39 篇 the state key la...
  • 33 篇 institute for ar...
  • 32 篇 guangdong provin...
  • 31 篇 neuroxess co. lt...
  • 31 篇 school of artifi...
  • 29 篇 the coai group d...
  • 29 篇 department of co...
  • 27 篇 state key lab on...
  • 24 篇 huawei noah’s ar...
  • 23 篇 state key labora...

作者

  • 89 篇 huang minlie
  • 42 篇 wu xinyu
  • 38 篇 sun maosong
  • 32 篇 liu zhiyuan
  • 31 篇 chen enhong
  • 29 篇 pan gang
  • 27 篇 tiger h. tao
  • 23 篇 xiaoling wei
  • 23 篇 liuyang sun
  • 21 篇 sang shengbo
  • 20 篇 zhu xiaoyan
  • 20 篇 zhitao zhou
  • 19 篇 tang huajin
  • 19 篇 tao tiger h.
  • 19 篇 liu qi
  • 19 篇 xu tong
  • 18 篇 zheng qian
  • 18 篇 cui zhihua
  • 17 篇 xinyu wu
  • 17 篇 wei li

语言

  • 1,940 篇 英文
  • 405 篇 其他
  • 77 篇 中文
检索条件"机构=State Key Lab of Intelligence Technology and System"
2421 条 记 录,以下是461-470 订阅
排序:
Self-Supervised Interactive Embedding for One-Shot Organ Segmentation
收藏 引用
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 2023年 第10期70卷 2799-2808页
作者: Yang, Yang Wang, Bo Zhang, Dingwen Yuan, Yixuan Yan, Qingsen Zhao, Shijie You, Zheng Han, Junwei Northwestern Polytech Univ Sch Automat Xian Peoples R China Tsinghua Univ Dept Precis Instrument State Key Lab Precis Measurement Technol & Instrum Beijing Peoples R China Technology Ltd Beijing Jingzhen Med Beijing Peoples R China Fourth Mil Med Univ Xijing Hosp Dept Clin Immunol Xian 710032 Peoples R China Hefei Comprehens Natl Sci Ctr Inst Artificial Intelligence Hefei 230088 Peoples R China Northwestern Polytech Univ Sch Automat Brain & Artificial Intelligence Lab Xian 710072 Peoples R China Chinese Univ Hong Kong Dept Elect Engn Hong Kong Peoples R China Northwestern Polytech Univ Sch Comp Sci Xian Peoples R China Tsinghua Univ Dept Precis Instrument State Key Lab Precis Measurement Technol & Instrum Beijing Peoples R China
One-shot organ segmentation (OS2) aims at segmenting the desired organ regions from the input medical imaging data with only one pre-annotated example as the reference. By using the minimal annotation data to facilita... 详细信息
来源: 评论
Distributed Prescribed-Time Convex Optimization: Cascade Design and Time-Varying Gain Approach
arXiv
收藏 引用
arXiv 2024年
作者: Zuo, Gewei Zhu, Lijun Wang, Yujuan Chen, Zhiyong School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan430072 China Key Laboratory of Imaging Processing and Intelligence Control Huazhong University of Science and Technology Wuhan430074 China The State Key Laboratory of Power Transmission Equipment & System Security and New Technology School of Automation Chongqing University Chongqing400044 China School of Engineering The University of Newcastle CallaghanNSW2308 Australia
In this paper, we address the distributed prescribed-time convex optimization (DPTCO) problem for a class of high-order nonlinear multi-agent systems (MASs) under undirected connected graphs. A cascade design framewor... 详细信息
来源: 评论
Simplified Neural Network Based Optical Performance Monitoring Using Amplitude Histogram Metrics and Tap Coefficients  29
Simplified Neural Network Based Optical Performance Monitori...
收藏 引用
29th Opto-Electronics and Communications Conference, OECC 2024
作者: Wan, Zhiquan Yu, Zhenming Xu, Kun Yin, Kun Yu, Hui Hu, Chuliang Zhejiang Lab Research Center of High Efficiency Computing System Hangzhou China Beijing University of Posts and Telecommunications State Key Laboratory of Information Photonics and Optical Communications Beijing China Chinese Academy of Sciences Institute of Innovative Computing Technology Hangzhou China
We demonstrate a simplified neural network to estimate OSNR in nonlinear regime using tap coefficients and metrics extracted from amplitude histogram. The MSE of OSNR estimation improves 1 dB with the help of tap coef... 详细信息
来源: 评论
U-REPA: Aligning Diffusion U-Nets to ViTs
arXiv
收藏 引用
arXiv 2025年
作者: Tian, Yuchuan Chen, Hanting Zheng, Mengyu Liang, Yuchen Xu, Chao Wang, Yunhe State Key Lab of General AI School of Intelligence Science and Technology Peking University China Huawei Noah’s Ark Lab Canada The University of Sydney Australia School of Mathematical Sciences Peking University China
Representation Alignment (REPA) that aligns Diffusion Transformer (DiT) hidden-states with ViT visual encoders has proven highly effective in DiT training, demonstrating superior convergence properties, but it has not... 详细信息
来源: 评论
Self-Supervised Teaching and Learning of Representations on Graphs  23
Self-Supervised Teaching and Learning of Representations on ...
收藏 引用
32nd ACM World Wide Web Conference, WWW 2023
作者: Wan, Liangtian Fu, Zhenqiang Sun, Lu Wang, Xianpeng Xu, Gang Yan, Xiaoran Xia, Feng Key Laboratory for Ubiquitous Network Service Software of Liaoning Province School of Software Dalian University of Technology Dalian China Department of Communication Engineering Institute of Information Science Technology Dalian Maritime University Dalian China State Key Laboratory of Marine Resource Utilization in South China Sea School of Information and Communication Engineering Hainan University Haikou China State Key Laboratory of Millimeter Waves School of Information Science and Engineering Southeast University Nanjing China Research Center of Big Data Intelligence Research Institute of Artificial Intelligence Zhejiang Lab Hangzhou China School of Computing Technologies Rmit University Melbourne Australia
Recent years have witnessed significant advances in graph contrastive learning (GCL), while most GCL models use graph neural networks as encoders based on supervised learning. In this work, we propose a novel graph le... 详细信息
来源: 评论
Beyond Textual Constraints: Learning Novel Diffusion Conditions with Fewer Examples
Beyond Textual Constraints: Learning Novel Diffusion Conditi...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Yuyang Yu Bangzhen Liu Chenxi Zheng Xuemiao Xu Shengfeng He Huaidong Zhang South China University of Technology State Key Laboratory of Subtropical Building Science Guangdong Provincial Key Lab of Computational Intelligence and Cyberspace Information Ministry of Education Key Laboratory of Big Data and Intelligent Robot Singapore Management University
In this paper, we delve into a novel aspect of learning novel diffusion conditions with datasets an order of magnitude smaller. The rationale behind our approach is the elimination of textual constraints during the fe... 详细信息
来源: 评论
Beyond Simple Sum of Delayed Rewards: Non-Markovian Reward Modeling for Reinforcement Learning
arXiv
收藏 引用
arXiv 2024年
作者: Tang, Yuting Cai, Xin-Qiang Pang, Jing-Cheng Wu, Qiyu Ding, Yao-Xiang Sugiyama, Masashi The University of Tokyo Japan RIKEN Center for Advanced Intelligence Project Japan National Key Laboratory for Novel Software Technology Nanjing University China State Key Lab for CAD & CG Zhejiang University China
Reinforcement Learning (RL) empowers agents to acquire various skills by learning from reward signals. Unfortunately, designing high-quality instance-level rewards often demands significant effort. An emerging alterna... 详细信息
来源: 评论
Gait recognition based on sEMG and Deep Residual Shrinkage Network
Gait recognition based on sEMG and Deep Residual Shrinkage N...
收藏 引用
IEEE International Conference on Real-time Computing and Robotics (RCAR)
作者: Mingxiang Luo Lijun Yang Zeyu Sun Meng Yin Yue Ma Xinyu Wu Wujing Cao Shenzhen Institute of Advanced Technology Guangdong Provincial Key Lab of Robotics and Intelligent System Chinese Academy of Sciences and Southern University of Science and Technology Shenzhen Institute of Advanced Technology Guangdong Provincial Key Lab of Robotics and Intelligent System Chinese Academy of Sciences Shenzhen China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society University of Birmingham
Transverse resistance exoskeleton is expected to provide better rehabilitation training methods for patients with lower limb injury. Lateral walking gait recognition plays an important role in lateral resistance exosk...
来源: 评论
Safe reinforcement learning using finite-horizon gradient-based estimation  24
Safe reinforcement learning using finite-horizon gradient-ba...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Juntao Dai Yaodong Yang Qian Zheng Gang Pan College of Computer Science and Technology and The State Key Lab of Brain-Machine Intelligence Zhejiang University Hangzhou China Center for AI Safety and Governance Peking University Beijing China
A key aspect of Safe Reinforcement Learning (Safe RL) involves estimating the constraint condition for the next policy, which is crucial for guiding the optimization of safe policy updates. However, the existing Advan...
来源: 评论
Richelieu: Self-Evolving LLM-Based Agents for AI Diplomacy
arXiv
收藏 引用
arXiv 2024年
作者: Guan, Zhenyu Kong, Xiangyu Zhong, Fangwei Wang, Yizhou Institute for Artificial Intelligence Peking University Beijing China Computer School Beijing Information Science & Technology University Beijing China School of Artificial Intelligence Beijing Normal University Beijing China Center on Frontiers of Computing Studies School of Computer Science Nat’l Eng. Research Center of Visual Technology State Key Lab of General Artificial Intelligence Peking University Beijing China State Key Laboratory of General Artificial Intelligence BIGAI Beijing China
Diplomacy is one of the most sophisticated activities in human society, involving complex interactions among multiple parties that require skills in social reasoning, negotiation, and long-term strategic planning. Pre... 详细信息
来源: 评论