咨询与建议

限定检索结果

文献类型

  • 88 篇 会议
  • 61 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 150 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 101 篇 工学
    • 72 篇 计算机科学与技术...
    • 63 篇 软件工程
    • 13 篇 信息与通信工程
    • 11 篇 控制科学与工程
    • 10 篇 生物工程
    • 6 篇 电气工程
    • 6 篇 电子科学与技术(可...
    • 4 篇 机械工程
    • 4 篇 光学工程
    • 3 篇 仪器科学与技术
    • 2 篇 材料科学与工程(可...
    • 2 篇 化学工程与技术
    • 2 篇 安全科学与工程
  • 70 篇 理学
    • 49 篇 数学
    • 22 篇 统计学(可授理学、...
    • 11 篇 物理学
    • 11 篇 系统科学
    • 10 篇 生物学
    • 3 篇 化学
  • 29 篇 管理学
    • 23 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 4 篇 医学
    • 4 篇 临床医学
  • 2 篇 法学
    • 2 篇 社会学
  • 2 篇 农学
    • 2 篇 作物学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 文学
    • 1 篇 中国语言文学
    • 1 篇 外国语言文学

主题

  • 5 篇 generative adver...
  • 4 篇 statistics
  • 4 篇 semantics
  • 4 篇 machine learning
  • 4 篇 sentiment analys...
  • 3 篇 learning systems
  • 3 篇 deep neural netw...
  • 3 篇 neural networks
  • 3 篇 calibration
  • 2 篇 object detection
  • 2 篇 reinforcement le...
  • 2 篇 microeconomics
  • 2 篇 vector spaces
  • 2 篇 iterative method...
  • 2 篇 computational mo...
  • 2 篇 websites
  • 2 篇 diffusion
  • 2 篇 molecules
  • 2 篇 decision making
  • 2 篇 feature extracti...

机构

  • 9 篇 dept. of comp. s...
  • 8 篇 dept. of comp. s...
  • 6 篇 dept. of comp. s...
  • 5 篇 the hong kong un...
  • 4 篇 gaoling school o...
  • 4 篇 peng cheng labor...
  • 4 篇 department of co...
  • 4 篇 beijing key labo...
  • 4 篇 hong kong univer...
  • 3 篇 key lab. of inte...
  • 3 篇 state key lab. o...
  • 3 篇 school of comput...
  • 3 篇 dept. of comp. s...
  • 3 篇 south china univ...
  • 3 篇 gaoling school o...
  • 3 篇 state key lab of...
  • 3 篇 microsoft resear...
  • 3 篇 dept. of comp. s...
  • 3 篇 pazhou lab
  • 3 篇 tencent ai lab

作者

  • 59 篇 zhu jun
  • 26 篇 zhang bo
  • 20 篇 jun zhu
  • 18 篇 li chongxuan
  • 15 篇 su hang
  • 9 篇 bao fan
  • 8 篇 chen jianfei
  • 8 篇 bo zhang
  • 7 篇 dong yinpeng
  • 7 篇 chongxuan li
  • 7 篇 xu kun
  • 6 篇 zhang min
  • 5 篇 zhang lei
  • 5 篇 pang tianyu
  • 5 篇 liu shilong
  • 5 篇 ma shaoping
  • 5 篇 zhang hao
  • 5 篇 li feng
  • 4 篇 du chao
  • 4 篇 wang dong

语言

  • 148 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"机构=State Key Lab of Intelligent Tech. and Sys"
150 条 记 录,以下是1-10 订阅
排序:
TAILORING LANGUAGE GENERATION MODELS UNDER TOTAL VARIATION DISTANCE  11
TAILORING LANGUAGE GENERATION MODELS UNDER TOTAL VARIATION D...
收藏 引用
11th International Conference on Learning Representations, ICLR 2023
作者: Ji, Haozhe Ke, Pei Hu, Zhipeng Zhang, Rongsheng Huang, Minlie Dept. of Comp. Sci. & Tech. State Key Lab of Intelligent Tech. & Sys. China BNRist Center Tsinghua University Beijing100084 China Fuxi AI Lab NetEase Inc. China
The standard paradigm of neural language generation adopts maximum likelihood estimation (MLE) as the optimizing method. From a distributional view, MLE in fact minimizes the Kullback-Leibler divergence (KLD) between ... 详细信息
来源: 评论
PRESERVING PRE-TRAINED FEATURES HELPS CALIBRATE FINE-TUNED LANGUAGE MODELS  11
PRESERVING PRE-TRAINED FEATURES HELPS CALIBRATE FINE-TUNED L...
收藏 引用
11th International Conference on Learning Representations, ICLR 2023
作者: He, Guande Chen, Jianfei Zhu, Jun Dept.of Comp.Sci. & Tech. Institute for AI Tsinghua-Bosch Joint Center for ML BNRist Center State Key Lab for Intell.Tech.& Sys. Tsinghua University Beijing China Pazhou Lab Guangzhou510330 China
Large pre-trained language models (PLMs) have demonstrated strong performance on natural language understanding (NLU) tasks through ***, fine-tuned models still suffer from overconfident predictions, especially in out... 详细信息
来源: 评论
TAILORING LANGUAGE GENERATION MODELS UNDER TOTAL VARIATION DISTANCE
arXiv
收藏 引用
arXiv 2023年
作者: Ji, Haozhe Ke, Pei Hu, Zhipeng Zhang, Rongsheng Huang, Minlie Dept. of Comp. Sci. & Tech. State Key Lab of Intelligent Tech. & Sys China BNRist Center Tsinghua University Beijing100084 China Fuxi AI Lab NetEase Inc. China
The standard paradigm of neural language generation adopts maximum likelihood estimation (MLE) as the optimizing method. From a distributional view, MLE in fact minimizes the Kullback-Leibler divergence (KLD) between ... 详细信息
来源: 评论
EQUIVARIANT ENERGY-GUIDED SDE FOR INVERSE MOLECULAR DESIGN  11
EQUIVARIANT ENERGY-GUIDED SDE FOR INVERSE MOLECULAR DESIGN
收藏 引用
11th International Conference on Learning Representations, ICLR 2023
作者: Bao, Fan Zhao, Min Hao, Zhongkai Li, Peiyao Li, Chongxuan Zhu, Jun Dept. of Comp. Sci. & Tech. Institute for AI Tsinghua-Huawei Joint Center for AI BNRist Center State Key Lab for Intell. Tech. & Sys. Tsinghua University Beijing China Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China
Inverse molecular design is critical in material science and drug discovery, where the generated molecules should satisfy certain desirable properties. In this paper, we propose equivariant energy-guided stochastic di... 详细信息
来源: 评论
Dense Contrastive Loss for Instance Segmentation  33
Dense Contrastive Loss for Instance Segmentation
收藏 引用
33rd British Machine Vision Conference Proceedings, BMVC 2022
作者: Chen, Hang Tang, Chufeng Hu, Xiaolin Depart. of Comp. Sci. & Tech. State Key Lab of Intell. Tech. & Sys. THU-Bosch JCML Center BNRist Institute for AI THBI IDG/McGovern Institute for Brain Research Tsinghua University Beijing China Beijing China
Instance segmentation, which requires instance-level mask prediction, is a fundamental task in computer vision. Many methods have been proposed in this field. However, the existing methods still do not perform well in... 详细信息
来源: 评论
DAB-DETR: DYNAMIC ANCHOR BOXES ARE BETTER QUERIES FOR DETR  10
DAB-DETR: DYNAMIC ANCHOR BOXES ARE BETTER QUERIES FOR DETR
收藏 引用
10th International Conference on Learning Representations, ICLR 2022
作者: Liu, Shilong Li, Feng Zhang, Hao Yang, Xiao Qi, Xianbiao Su, Hang Zhu, Jun Zhang, Lei Dept. of Comp. Sci. and Tech. BNRist Center State Key Lab for Intell. Tech. & Sys. Institute for AI Tsinghua-Bosch Joint Center for ML Tsinghua University China China Hong Kong University of Science and Technology Hong Kong Peng Cheng Laboratory Guangdong Shenzhen China
We present in this paper a novel query formulation using dynamic anchor boxes for DETR (DEtection TRansformer) and offer a deeper understanding of the role of queries in DETR. This new formulation directly uses box co...
来源: 评论
ANALYTIC-DPM: AN ANALYTIC ESTIMATE OF THE OPTIMAL REVERSE VARIANCE IN DIFFUSION PROBABILISTIC MODELS  10
ANALYTIC-DPM: AN ANALYTIC ESTIMATE OF THE OPTIMAL REVERSE VA...
收藏 引用
10th International Conference on Learning Representations, ICLR 2022
作者: Bao, Fan Li, Chongxuan Zhu, Jun Zhang, Bo Dept. of Comp. Sci. & Tech. Institute for AI Tsinghua-Huawei Joint Center for AI BNRist Center State Key Lab for Intell. Tech. & Sys. Tsinghua University Beijing China Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China
Diffusion probabilistic models (DPMs) represent a class of powerful generative models. Despite their success, the inference of DPMs is expensive since it generally needs to iterate over thousands of timesteps. A key p... 详细信息
来源: 评论
PRESERVING PRE-TRAINED FEATURES HELPS CALIBRATE FINE-TUNED LANGUAGE MODELS
arXiv
收藏 引用
arXiv 2023年
作者: He, Guande Chen, Jianfei Zhu, Jun Dept. of Comp. Sci. & Tech. Institute for AI Tsinghua-Bosch Joint Center for ML BNRist Center State Key Lab for Intell. Tech. & Sys. Tsinghua University Beijing China Pazhou Lab Guangzhou510330 China
Large pre-trained language models (PLMs) have demonstrated strong performance on natural language understanding (NLU) tasks through fine-tuning. However, fine-tuned models still suffer from overconfident predictions, ... 详细信息
来源: 评论
INVESTIGATING UNCERTAINTY CALIBRATION OF ALIGNED LANGUAGE MODELS UNDER THE MULTIPLE-CHOICE SETTING
arXiv
收藏 引用
arXiv 2023年
作者: He, Guande Cui, Peng Chen, Jianfei Hu, Wenbo Zhu, Jun Dept. of Comp. Sci. & Tech. Institute for AI Tsinghua-Bosch Joint Center for ML BNRist Center State Key Lab for Intell. Tech. & Sys. Tsinghua University Beijing China Hefei University of Technology China
Despite the significant progress made in practical applications of aligned language models (LMs), they tend to be overconfident in output answers compared to the corresponding pre-trained LMs. In this work, we systema... 详细信息
来源: 评论
Visual Recognition by Request
arXiv
收藏 引用
arXiv 2022年
作者: Tang, Chufeng Xie, Lingxi Zhang, Xiaopeng Hu, Xiaolin Tian, Qi Dept. of Comp. Sci. & Tech. State Key Lab for Intell. Tech. & Sys. Institute for AI BNRist Tsinghua University China Huawei Inc. China
Humans have the ability of recognizing visual semantics in an unlimited granularity, but existing visual recognition algorithms cannot achieve this goal. In this paper, we establish a new paradigm named visual recogni... 详细信息
来源: 评论