咨询与建议

限定检索结果

文献类型

  • 80 篇 会议
  • 24 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 105 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 70 篇 工学
    • 48 篇 计算机科学与技术...
    • 47 篇 软件工程
    • 12 篇 信息与通信工程
    • 12 篇 控制科学与工程
    • 5 篇 仪器科学与技术
    • 5 篇 电子科学与技术(可...
    • 4 篇 光学工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 电气工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 机械工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 测绘科学与技术
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
    • 1 篇 农业工程
  • 42 篇 理学
    • 30 篇 数学
    • 12 篇 统计学(可授理学、...
    • 10 篇 物理学
    • 8 篇 系统科学
    • 2 篇 化学
    • 1 篇 地球物理学
    • 1 篇 生物学
  • 25 篇 管理学
    • 19 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 2 篇 医学
    • 2 篇 临床医学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学

主题

  • 4 篇 neural networks
  • 4 篇 search engines
  • 4 篇 intelligent syst...
  • 3 篇 vector spaces
  • 3 篇 websites
  • 3 篇 semantics
  • 3 篇 natural language...
  • 3 篇 sentiment analys...
  • 2 篇 learning systems
  • 2 篇 information anal...
  • 2 篇 statistics
  • 2 篇 convergence
  • 2 篇 intelligent netw...
  • 2 篇 image retrieval
  • 2 篇 pattern recognit...
  • 2 篇 stochastic syste...
  • 2 篇 smoothing method...
  • 2 篇 image analysis
  • 2 篇 estimation
  • 2 篇 artificial intel...

机构

  • 5 篇 institute of inf...
  • 4 篇 dept. of physics...
  • 3 篇 key lab. of inte...
  • 3 篇 state key lab. o...
  • 3 篇 school of comput...
  • 3 篇 dept. of comp. s...
  • 3 篇 school of electr...
  • 3 篇 state key lab of...
  • 3 篇 microsoft resear...
  • 3 篇 state key labora...
  • 3 篇 department of co...
  • 3 篇 state key labora...
  • 2 篇 key laboratory o...
  • 2 篇 state key labora...
  • 2 篇 dept. of comp. s...
  • 2 篇 robotics institu...
  • 2 篇 bnrist center ts...
  • 2 篇 state key labora...
  • 2 篇 peng cheng labor...
  • 2 篇 cst dept state k...

作者

  • 15 篇 zhu xiaoyan
  • 8 篇 zhu jun
  • 7 篇 jun zhu
  • 7 篇 jiang minghu
  • 6 篇 sun maosong
  • 6 篇 zhang bo
  • 5 篇 tang xiaofang
  • 5 篇 min zhang
  • 5 篇 ma shaoping
  • 5 篇 yuan baozong
  • 4 篇 zhang min
  • 4 篇 huang minlie
  • 4 篇 shaoping ma
  • 4 篇 bu fan
  • 4 篇 xu hua
  • 3 篇 ruan qiuqi
  • 3 篇 lin biqin
  • 3 篇 liu yang
  • 3 篇 wang dong
  • 3 篇 maosong sun

语言

  • 103 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"机构=State Key Lab of Intelligent Tech. and Systems"
105 条 记 录,以下是21-30 订阅
排序:
Prima: Probabilistic Ranking with Inter-Item Competition and Multi-Attribute Utility Function
Prima: Probabilistic Ranking with Inter-Item Competition and...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Qingming Li Zhanjiang Chen H. Vicky Zhao Yan Lindsay Sun Dept. of Automation Tsinghua Univ. State Key Lab of Intelligent Tech. & Sys. Tsinghua National Laboratory for Info. Sci. and Tech. Beijing P.R. China Dept. of Electrical Computer and Biomedical Engineering Univ. of Rhode Island USA
This paper proposes PRIMA: Probabilistic Ranking with Inter-item competition and Multi-Attribute utility function, which ranks items based on their probabilities of being a user's best choice. This framework is pa... 详细信息
来源: 评论
Power system state estimation via feasible point pursuit: Algorithms and Cramér-Rao bound
arXiv
收藏 引用
arXiv 2017年
作者: Wang, Gang Zamzam, Ahmed S. Giannakis, Georgios B. Sidiropoulos, Nicholas D. Digital Tech. Center ECE Dept. U. of Minnesota MplsMN55455 United States State Key Lab. of Intelligent Control and Decision of Complex Systems Beijing Inst. of Tech. Beijing100081 China
Accurately monitoring the system's operating point is central to the reliable and economic operation of an electric power grid. Power system state estimation (PSSE) aims to obtain complete voltage magnitude and an... 详细信息
来源: 评论
Riemannian Stein variational gradient descent for Bayesian inference
arXiv
收藏 引用
arXiv 2017年
作者: Liu, Chang Zhu, Jun Dept. of Comp. Sci. & Tech. TNList Lab Center for Bio-Inspired Computing Research State Key Lab for Intell. Tech. & Systems Tsinghua University Beijing China
We develop Riemannian Stein Variational Gradient Descent (RSVGD), a Bayesian inference method that generalizes Stein Variational Gradient Descent (SVGD) to Riemann manifold. The benefits are two-folds: (i) for inferen... 详细信息
来源: 评论
Solving Large-scale systems of Random Quadratic Equations via Stochastic Truncated Amplitude Flow
Solving Large-scale Systems of Random Quadratic Equations vi...
收藏 引用
European Signal Processing Conference
作者: Gang Wang Georgios B. Giannakis Jie Chen Dept. of ECE and Digital Tech. Center Univ. of Minnesota Mpls MN USA State Key Lab of Intelligent Control and Decision of Complex Systems Beijing Institute of Technology Beijing China
This work develops a new iterative algorithm, which is called stochastic truncated amplitude flow (STAF), to recover an unknown signal x ∈ R~n from m "phaseless" quadratic equations of the form ψ_i = |a_i~... 详细信息
来源: 评论
WarpLDA: A cache efficient O(1) algorithm for latent dirichlet allocation
WarpLDA: A cache efficient O(1) algorithm for latent dirichl...
收藏 引用
42nd International Conference on Very Large Data Bases, VLDB 2016
作者: Chen, Jianfei Li, Kaiwei Zhu, Jun Chen, Wenguang Dept. of Comp. Sci. and Tech. TNList Lab CBICR Center Tsinghua University China State Key Lab of Intelligent Technology and Systems Beijing100084 China China
Developing efficient and scalable algorithms for Latent Dirichlet Allocation (LDA) is of wide interest for many applications. Previous work has developed an O(1) Metropolis-Hastings (MH) sampling method for each token... 详细信息
来源: 评论
Conditional generative moment-matching networks  30
Conditional generative moment-matching networks
收藏 引用
30th Annual Conference on Neural Information Processing systems, NIPS 2016
作者: Ren, Yong Li, Jialian Luo, Yucen Zhu, Jun Dept. of Comp. Sci. and Tech. TNList Lab. Tsinghua University Beijing China Center for Bio-Inspired Computing Research State Key Lab. for Intell. Tech. and Systems Tsinghua University Beijing China
Maximum mean discrepancy (MMD) has been successfully applied to learn deep generative models for characterizing a joint distribution of variables via kernel mean embedding. In this paper, we present conditional genera... 详细信息
来源: 评论
Kernel Bayesian inference with posterior regularization  30
Kernel Bayesian inference with posterior regularization
收藏 引用
30th Annual Conference on Neural Information Processing systems, NIPS 2016
作者: Song, Yang Zhu, Jun Ren, Yong Dept. of Physics Tsinghua University Beijing China Dept. of Comp. Sci. and Tech. TNList Lab. Tsinghua University Beijing China Center for Bio-Inspired Computing Research State Key Lab for Intell. Tech. and Systems Tsinghua University Beijing China
We propose a vector-valued regression problem whose solution is equivalent to the reproducing kernel Hilbert space (RKHS) embedding of the Bayesian posterior distribution. This equivalence provides a new understanding... 详细信息
来源: 评论
Stochastic gradient geodesic MCMC methods  30
Stochastic gradient geodesic MCMC methods
收藏 引用
30th Annual Conference on Neural Information Processing systems, NIPS 2016
作者: Liu, Chang Zhu, Jun Song, Yang Dept. of Comp. Sci. and Tech. TNList Lab. Center for Bio-Inspired Computing Research Beijing China State Key Lab for Intell. Tech. and Systems Tsinghua University Beijing China Dept. of Physics Tsinghua University Beijing China Department of Computer Science Stanford University CA United States
We propose two stochastic gradient MCMC methods for sampling from Bayesian posterior distributions defined on Riemann manifolds with a known geodesic flow, e.g. hyperspheres. Our methods are the first scalable samplin... 详细信息
来源: 评论
Conditional Generative Moment-Matching Networks  16
Conditional Generative Moment-Matching Networks
收藏 引用
Annual Conference on Neural Information Processing systems
作者: Yong Ren Jialian Li Yucen Luo Jun Zhu Dept. of Comp. Sci. & Tech. TNList LabCenter for Bio-Inspired Computing Research State Key Lab for Intell. Tech. & Systems Tsinghua University Beijing China
Maximum mean discrepancy (MMD) has been successfully applied to learn deep generative models for characterizing a joint distribution of variables via kernel mean embedding. In this paper, we present conditional genera...
来源: 评论
PSSE Redux: Convex relaxation, decentralized, robust, and dynamic approaches
arXiv
收藏 引用
arXiv 2017年
作者: Kekatos, Vassilis Wang, Gang Zhu, Hao Giannakis, Georgios B. Bradley Department of Electrical and Computer Engineering Virginia Tech BlacksburgVA24061 United States Department of Electrical and Computer Engineering University of Minnesota MinneapolisMN55455 United States State Key Lab of Intelligent Control and Decision of Complex Systems Beijing Institute of Technology Beijing100081 China Department of Electrical and Computer Engineering University of Illinois UrbanaIL61801 United States
来源: 评论