咨询与建议

限定检索结果

文献类型

  • 215 篇 会议
  • 153 篇 期刊文献

馆藏范围

  • 368 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 263 篇 工学
    • 109 篇 计算机科学与技术...
    • 90 篇 软件工程
    • 65 篇 控制科学与工程
    • 65 篇 交通运输工程
    • 48 篇 机械工程
    • 46 篇 信息与通信工程
    • 41 篇 电子科学与技术(可...
    • 33 篇 材料科学与工程(可...
    • 31 篇 仪器科学与技术
    • 29 篇 电气工程
    • 23 篇 化学工程与技术
    • 21 篇 光学工程
    • 21 篇 安全科学与工程
    • 20 篇 生物工程
    • 14 篇 动力工程及工程热...
    • 14 篇 船舶与海洋工程
    • 14 篇 生物医学工程(可授...
    • 13 篇 力学(可授工学、理...
    • 8 篇 冶金工程
    • 8 篇 土木工程
  • 132 篇 理学
    • 60 篇 数学
    • 48 篇 物理学
    • 23 篇 生物学
    • 22 篇 化学
    • 12 篇 系统科学
    • 11 篇 统计学(可授理学、...
  • 43 篇 管理学
    • 33 篇 管理科学与工程(可...
    • 17 篇 工商管理
    • 11 篇 图书情报与档案管...
  • 8 篇 医学
  • 7 篇 法学
  • 5 篇 经济学
  • 1 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 12 篇 autonomous vehic...
  • 9 篇 safety
  • 9 篇 transportation
  • 8 篇 roads
  • 8 篇 semantics
  • 8 篇 accuracy
  • 7 篇 object detection
  • 7 篇 three-dimensiona...
  • 7 篇 data mining
  • 7 篇 real-time system...
  • 6 篇 trajectory
  • 6 篇 analytical model...
  • 6 篇 sensors
  • 6 篇 heuristic algori...
  • 5 篇 reinforcement le...
  • 5 篇 semantic segment...
  • 5 篇 motion planning
  • 5 篇 load modeling
  • 5 篇 optimization
  • 5 篇 computational mo...

机构

  • 26 篇 state key lab of...
  • 22 篇 school of transp...
  • 18 篇 state key labora...
  • 13 篇 intelligent tran...
  • 11 篇 state key lab of...
  • 11 篇 state key labora...
  • 11 篇 zhongguancun lab...
  • 9 篇 state key labora...
  • 8 篇 school of transp...
  • 8 篇 the key laborato...
  • 7 篇 intelligent tran...
  • 6 篇 ministry of indu...
  • 6 篇 national enginee...
  • 6 篇 school of transp...
  • 6 篇 school of naviga...
  • 5 篇 state key lab of...
  • 5 篇 state key labora...
  • 5 篇 pengcheng labora...
  • 5 篇 state key lab of...
  • 5 篇 terahertz techno...

作者

  • 13 篇 feng gao
  • 10 篇 duan xuting
  • 10 篇 xiaohong guan
  • 10 篇 zhou jianshan
  • 8 篇 liu chenguang
  • 8 篇 wang zhangyu
  • 8 篇 kun liu
  • 8 篇 wang feng
  • 8 篇 ren yilong
  • 7 篇 sang shengbo
  • 7 篇 dai pan
  • 7 篇 chen xiangfei
  • 7 篇 chu xiumin
  • 7 篇 he zhibo
  • 7 篇 wang jiacheng
  • 7 篇 wang yu
  • 6 篇 yu wang
  • 6 篇 yu haiyang
  • 6 篇 jiang wu
  • 6 篇 xuting duan

语言

  • 318 篇 英文
  • 35 篇 其他
  • 16 篇 中文
  • 2 篇 德文
  • 2 篇 法文
检索条件"机构=State Key Lab of Intelligent Transportation System"
368 条 记 录,以下是1-10 订阅
排序:
Multi-level Spatiotemporal Monitoring Methods for Carbon Emissions of Road Operating Vehicles
Multi-level Spatiotemporal Monitoring Methods for Carbon Emi...
收藏 引用
International Conference on Artificial Intelligence and Autonomous transportation, AIAT 2024
作者: Ji, Meichen Song, Yan Hu, Song Liu, Yuqing Wang, Jing Research Institute of Highway Ministry of Transport Beijing100088 China State Key Lab of Intelligent Transportation System Beijing100088 China
Carbon emissions monitoring of road operating vehicles is usually based on the statistical calculation methods at large spatiotemporal scales, and a set of multi-level spatiotemporal monitoring method that combines ma... 详细信息
来源: 评论
A Two-Stage Extended Kalman Filter-Based Approach Against FDI Cyber-Attack in intelligent and Connected Vehicles
A Two-Stage Extended Kalman Filter-Based Approach Against FD...
收藏 引用
11th International Conference on Vehicle Technology and intelligent Transport systems, VEHITS 2025
作者: Sun, Bin Yang, Shichun Wang, Yu Lu, Jiayi Cao, Yaoguang School of Transportation Science and Engineering Beihang University Beijing China State Key Lab of Intelligent Transportation System Beihang University Beijing China
With the widespread integration of artificial intelligence and telecommunication technologies in vehicles, the challenge of cybersecurity in intelligent and Connected Vehicles (ICVs) has gained significant attention. ... 详细信息
来源: 评论
Real-Time LiDAR Point Cloud Semantic Segmentation for Unstructured Road Autonomous Driving
Real-Time LiDAR Point Cloud Semantic Segmentation for Unstru...
收藏 引用
International Conference on Artificial Intelligence and Autonomous transportation, AIAT 2024
作者: Li, Huazhi Yu, Guizhen Wang, Zhangyu Chen, Yang Zhao, Fei School of Transportation Science and Engineering Beihang University Beijing100191 China State Key Lab of Intelligent Transportation System Beijing China School of Vehicle and Mobility Tsinghua University Beijing100084 China
Lidar-based semantic segmentation is critical for autonomous driving, but existing methods struggle with real-time performance in unstructured environments like open-pit mining areas. This paper proposes a real-time s... 详细信息
来源: 评论
Recognition of Typical Highway Driving Scenarios for intelligent Connected Vehicles Based on Long Short-Term Memory Network
Recognition of Typical Highway Driving Scenarios for Intelli...
收藏 引用
11th International Conference on Vehicle Technology and intelligent Transport systems, VEHITS 2025
作者: Feng, Xinjie Yang, Shichun Peng, Zhaoxia Chen, Yuyi Sun, Bin Lu, Jiayi Wang, Rui Cao, Yaoguang School of Transportation Science and Engineering Beihang University Beijing China State Key Lab of Intelligent Transportation System Beihang University Beijing China Hangzhou International Innovation Institute Beihang University Hangzhou China
In the complex traffic environment where intelligent connected vehicles (ICVs) and traditional vehicles coexist, accurately identifying the driving scenarios of a vehicle helps ICVs make safer and more efficient decis... 详细信息
来源: 评论
Recognize then Resolve: A Hybrid Framework for Understanding Interaction and Cooperative Conflict Resolution in Mixed Traffic
arXiv
收藏 引用
arXiv 2025年
作者: Fang, Shiyu Zhou, Donghao Cui, Yiming Xu, ChengKai Hang, Peng Sun, Jian College of Transportation Tongji University Shanghai201804 China State Key Lab of Intelligent Transportation System Beijing100088 China
A lack of understanding of interactions and the inability to effectively resolve conflicts continue to impede the progress of Connected Autonomous Vehicles (CAVs) in their interactions with Human-Driven Vehicles (HDVs... 详细信息
来源: 评论
A Simulation Model for Mechanism Analysis of Interoperation in Road Autonomous transportation system
A Simulation Model for Mechanism Analysis of Interoperation ...
收藏 引用
International Conference on Artificial Intelligence and Autonomous transportation, AIAT 2024
作者: Liu, Yanyue Zhang, Yipeng Li, Zhenhua ITS Center Research Institute of Highway Ministry of Transport Beijing100088 China State Key Laboratory of Intelligent Transportation System Research Institute of Highway Ministry of Transport Beijing100088 China
This paper proposed a simulation model for analyzing interoperation process of road autonomous transportation system. First, an interoperation simulation model built with complex network theory is proposed. In the mod... 详细信息
来源: 评论
LLM-Enhanced Reinforcement Learning for Traffic Control at On-Ramp Merging Areas
LLM-Enhanced Reinforcement Learning for Traffic Control at O...
收藏 引用
International Conference on Artificial Intelligence and Autonomous transportation, AIAT 2024
作者: Yin, Qihao Xiong, Zhengang Liu, Yanyue ITS Center Research Institute of Highway Ministry of Transport Beijing100088 China State Key Laboratory of Intelligent Transportation System Research Institute of Highway Ministry of Transport Beijing100088 China
The on-ramp merging area plays an important role in improving the overall safety and efficiency of the traffic. At present, the widely used ramp merging control methods are mostly based on reinforcement learning (RL),... 详细信息
来源: 评论
An Engineering Evaluation Methodology of Heterogeneous Network for Highway Infrastructure Monitoring Data Transmission Based on Graph Theory
An Engineering Evaluation Methodology of Heterogeneous Netwo...
收藏 引用
International Conference on Artificial Intelligence and Autonomous transportation, AIAT 2024
作者: Li, Zhenhua Zhang, Yipeng Chen, Yi School of Electrical and Control Engineering North China University of Technology Beijing100144 China Research Institute of Highway Ministry of Transport Ministry of Transport Beijing100081 China State Key Lab of Intelligent Transportation System Ministry of Transport Beijing100081 China
A large-scale highway infrastructure monitoring system requires a complex and heterogeneous data transmission network to transmit different types and large amounts of sensor data. In order to meet the requirement of r... 详细信息
来源: 评论
FusionSis: Analysis and Evaluation Framework for Fusion Safety state of Connected and Automated Vehicles Under Cyber Attacks  1st
FusionSis: Analysis and Evaluation Framework for Fusion Sa...
收藏 引用
1st International Symposium on intelligent Technology for Future transportation, ITFT 2024
作者: Zheng, Bowen Yang, Shichun Gong, Weifeng Guang, Haoran Shi, Yi Chen, Mingjie Cao, Yaoguang School of Transportation Science and Engineering Beihang University Beijing100191 China State Key Lab of Intelligent Transportation System Beihang University Beijing100191 China
As connected and autonomous vehicles (CAVs) become more integrated into complex networks and systems, which introduce both safety and security concerns. To address these challenges, it is crucial to develop a fusion s... 详细信息
来源: 评论
Interact, Instruct to Improve: A LLM-Driven Parallel Actor-Reasoner Framework for Enhancing Autonomous Vehicle Interactions
arXiv
收藏 引用
arXiv 2025年
作者: Fang, Shiyu Liu, Jiaqi Xu, Chengkai Lv, Chen Hang, Peng Sun, Jian College of Transportation Tongji University Shanghai201804 China State Key Lab of Intelligent Transportation System Beijing100088 China Nanyang Technological University 639798 Singapore
Autonomous Vehicles (AVs) have entered the commercialization stage, but their limited ability to interact and express intentions still poses challenges in interactions with Human-driven Vehicles (HVs). Recent advances... 详细信息
来源: 评论