THE development of agriculture faces significant challenges due to population growth, climate change, land depletion, and environmental pollution, threatening global food security [1]. This necessitates the developmen...
THE development of agriculture faces significant challenges due to population growth, climate change, land depletion, and environmental pollution, threatening global food security [1]. This necessitates the development of sustainable agriculture, where a fundamental step is crop breeding to improve agronomic or economic traits, e.g., increasing yields of crops while decreasing resource usage and minimizing pollution to the environment [2].
COMPUTATIONAL knowledge vision [1] is emphasized as a novel perspective or field in this paper. It first proposes the visual hierarchy and its connection to knowledge, stating that knowledge is a justified true belief...
详细信息
COMPUTATIONAL knowledge vision [1] is emphasized as a novel perspective or field in this paper. It first proposes the visual hierarchy and its connection to knowledge, stating that knowledge is a justified true belief. To further the previous research, we concisely summarize our recent works and suggest a new direction that knowledge is also a thought framework in vision.
Dear Editor,Light fields give relatively complete description of scenes from perspective of angles and positions of rays. At present time, most of the computer vision algorithms take 2D images as input which are simpl...
详细信息
Dear Editor,Light fields give relatively complete description of scenes from perspective of angles and positions of rays. At present time, most of the computer vision algorithms take 2D images as input which are simplified expression of light fields with depth information discarded. In theory, computer vision tasks may achieve better performance as long as complete light fields are acquired.
Dear Editor,This letter focuses on leveraging the object information in images to improve the performance of the U-Net based change *** detection is fundamental to many computer vision *** existing solutions based on ...
详细信息
Dear Editor,This letter focuses on leveraging the object information in images to improve the performance of the U-Net based change *** detection is fundamental to many computer vision *** existing solutions based on deep neural networks are able to achieve impressive results.
This paper deals with a cooperation communication problem (relay selection and power control) for mobile underwater acoustic communication networks. To achieve satisfactory transmission capacity, we propose a reinforc...
详细信息
This paper deals with a cooperation communication problem (relay selection and power control) for mobile underwater acoustic communication networks. To achieve satisfactory transmission capacity, we propose a reinforcement-learning-based cooperation communication scheme to efficiently resist the highly dynamic communication links and strongly unknown time-varying channel states caused by the mobility of Autonomous Underwater Vehicles (AUVs). Firstly, a particular Markov decision process is developed to model the dynamic relay selection process of mobile AUV in the unknown scenario. In the developed model, an experimental statistical-based partition mechanism is proposed to cope with the greatly increasing dimension of the state space caused by the mobility of AUV, reducing the search optimization difficulty. Secondly, a dual-thread reinforcement learning structure with actual and virtual learning threads is proposed to efficiently track the superior relay action. In the actual learning thread, the proposed improved probability greedy policy enables the AUV to strengthen the exploration for the reward information of potential superior relays on the current state. Meanwhile, in the virtual learning thread, the proposed upper-confidence-bound-index-based uncertainty estimation method can estimate the action-reward level of historical states. Consequently, the combination of actual and virtual learning threads can efficiently obtain satisfactory Q value information, thereby making superior relay decision-making in a short time. Thirdly, a power control mechanism is proposed to reuse the current observed action-reward information and transform the multiple unknown parameter nonlinear joint power optimization problem into a convex optimization problem, thereby enhancing network transmission capacity. Finally, simulation results verify the effectiveness of the proposed scheme. IEEE
Hand gesture recognition has become a vital subject in the fields of human-computer interaction and rehabilitation *** paper presents a multi-modal fusion for hand gesture recognition(MFHG)model,which uses two heterog...
详细信息
Hand gesture recognition has become a vital subject in the fields of human-computer interaction and rehabilitation *** paper presents a multi-modal fusion for hand gesture recognition(MFHG)model,which uses two heterogeneous networks to extract and fuse the features of the vision-based motion signals and the surface electromyography(s EMG)signals,*** extract the features of the vision-based motion signals,a graph neural network,named the cumulation graph attention(CGAT)model,is first proposed to characterize the prior knowledge of motion coupling between finger *** CGAT model uses the cumulation mechanism to combine the early and late extracted features to improve motion-based hand gesture *** the s EMG signals,a time-frequency convolutional neural network model,named TF-CNN,is proposed to extract both the signals'time-domain and frequency-domain *** improve the performance of hand gesture recognition,the deep features from multiple modes are merged with an average layer,and then the regularization items containing center loss and the mutual information loss are employed to enhance the robustness of this multi-modal ***,a data set containing the multi-modal signals from seven subjects on different days is built to verify the performance of the multi-modal *** experimental results indicate that the MFHG can reach 99.96%and 92.46%accuracy on hand gesture recognition in the cases of within-session and cross-day,respectively.
Autonomous manipulation operations represent the high intelligent coordination from robotic vision and control, it is also a symbol of the advances of robotic intelligence. The limitations of visual sensing and the in...
详细信息
Autonomous manipulation operations represent the high intelligent coordination from robotic vision and control, it is also a symbol of the advances of robotic intelligence. The limitations of visual sensing and the increasingly complex experimental conditions make autonomous manipulation operations more difficult, particularly for deep reinforcement learning methods, which can enhance robotic control intelligence but require a lot of training process. Due to the highdimensional continuous state space and continuous action space characteristics of underwater operations, this paper adopts a policy -based reinforcement learning method as the foundational approach. To address the issues of instability and low convergence efficiency in traditional policybased reinforcement learning algorithms during the learning process, this paper proposes a novel policy learning method. This method adopts the Proximal Policy Optimization algorithm (PPO - Clip) and optimizes it through an actor -critic network. The aim is to improve the stability and effectiveness of convergence in the learning process. In the underwater training environment, a new reward shaping scheme has been designed to address the issue of reward sparsity during the training process. The manually crafted dense reward function is utilized as attractive and repulsive potential functions for goal manipulation and obstacle avoidance. On the highly complex underwater manipulation and training environment, transferred learning algorithm has been established to reduce the training times and compensate the differences between the simulation and experiment. Simulations and tank experiments have verified the performance of the proposed strategy learning method.
Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation *** approaches require traffic signal professionals to...
详细信息
Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation *** approaches require traffic signal professionals to manually intervene on traffic control devices at the intersection level,utilizing their knowledge and ***,this process is cumbersome,labor-intensive,and cannot be applied on a large network *** studies have begun to explore the applicability of recommendation system for urban traffic control,which offer increased control efficiency and *** a decision recommendation system is complex,with various interdependent components,but a systematic literature review has not yet been *** this work,we present an up-to-date survey that elucidates all the detailed components of a recommendation system for urban traffic control,demonstrates the utility and efficacy of such a system in the real world using data and knowledgedriven approaches,and discusses the current challenges and potential future directions of this field.
暂无评论