咨询与建议

限定检索结果

文献类型

  • 108 篇 会议
  • 104 篇 期刊文献

馆藏范围

  • 212 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 168 篇 工学
    • 125 篇 计算机科学与技术...
    • 105 篇 软件工程
    • 31 篇 信息与通信工程
    • 22 篇 控制科学与工程
    • 14 篇 机械工程
    • 12 篇 生物工程
    • 11 篇 光学工程
    • 11 篇 生物医学工程(可授...
    • 8 篇 材料科学与工程(可...
    • 8 篇 电子科学与技术(可...
    • 7 篇 动力工程及工程热...
    • 7 篇 电气工程
    • 7 篇 化学工程与技术
    • 7 篇 交通运输工程
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 5 篇 土木工程
  • 65 篇 理学
    • 28 篇 数学
    • 17 篇 生物学
    • 11 篇 统计学(可授理学、...
    • 10 篇 物理学
    • 9 篇 化学
    • 9 篇 系统科学
  • 40 篇 管理学
    • 23 篇 管理科学与工程(可...
    • 20 篇 图书情报与档案管...
    • 11 篇 工商管理
  • 13 篇 医学
    • 12 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
  • 8 篇 法学
    • 6 篇 法学
  • 3 篇 经济学
  • 3 篇 农学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5 篇 semantics
  • 4 篇 computational mo...
  • 4 篇 machine learning
  • 4 篇 blockchain
  • 3 篇 scalability
  • 3 篇 regression analy...
  • 3 篇 computer archite...
  • 3 篇 big data
  • 3 篇 software as a se...
  • 3 篇 stochastic syste...
  • 3 篇 students
  • 3 篇 cloud computing
  • 3 篇 forecasting
  • 3 篇 data models
  • 2 篇 surveys
  • 2 篇 object detection
  • 2 篇 reinforcement le...
  • 2 篇 deep learning
  • 2 篇 deep neural netw...
  • 2 篇 safety

机构

  • 39 篇 state key labora...
  • 24 篇 state key lab of...
  • 21 篇 school of comput...
  • 17 篇 state key labora...
  • 8 篇 beijing advanced...
  • 7 篇 department of co...
  • 5 篇 university of ch...
  • 5 篇 state key lab of...
  • 4 篇 state key labora...
  • 4 篇 state key lab. o...
  • 4 篇 state key labora...
  • 4 篇 zhongguancun lab...
  • 4 篇 state key labora...
  • 3 篇 department of co...
  • 3 篇 hedps capt colle...
  • 3 篇 state key lab.of...
  • 3 篇 department of in...
  • 3 篇 school of comput...
  • 3 篇 department of co...
  • 3 篇 state key lab of...

作者

  • 8 篇 peng hao
  • 8 篇 li zhoujun
  • 8 篇 liu xianglong
  • 7 篇 xu ke
  • 6 篇 shilong ma
  • 6 篇 yu philip s.
  • 5 篇 tao dacheng
  • 4 篇 li jianxin
  • 4 篇 xu jun
  • 4 篇 gong ruihao
  • 4 篇 rui li
  • 4 篇 wenjun wu
  • 4 篇 wu wenjun
  • 3 篇 zhang duo
  • 3 篇 cai chun
  • 3 篇 zhang linfeng
  • 3 篇 liang peng
  • 3 篇 bai xiao
  • 3 篇 york darrin m.
  • 3 篇 meikang qiu

语言

  • 188 篇 英文
  • 23 篇 其他
  • 2 篇 中文
检索条件"机构=State Key Lab of Software Development Environment Department of Computer Science and Engineering"
212 条 记 录,以下是211-220 订阅
排序:
Multi-Agent Reinforcement Learning based Edge Content Caching for Connected Autonomous Vehicles in IoV
收藏 引用
ACM Transactions on Autonomous and Adaptive Systems 1000年
作者: Xiaolong Xu Linjie Gu Muhammad Bilal Maqbool Khan Yiping Wen Guoqiang Liu Yuan Yuan School of Software Jiangsu Province Engineering Research Center of Advanced Computing and Intelligent Services Nanjing University of Information Science and Technology China Changwang School of Honors Nanjing University of Information Science and Technology China Department of Computer and Electronics Systems Engineering Hankuk University of Foreign Studies Korea Department of IT and Computer Science Pak-Austria Fachhochschule-Institute of Applied Sciences and Technology Pakistan School of Computer Science and Engineering Hunan University of Science and Technology China School of Software Nanjing University of Information Science and Technology China School of Computer Science and Engineering Beihang University State Key Laboratory of Software Development Environment Zhongguancun Laboratory China
Connected Autonomous Vehicle (CAV) Driving, as a data-driven intelligent driving technology within the Internet of Vehicles (IoV), presents significant challenges to the efficiency and security of real-time data manag... 详细信息
来源: 评论
Large Language Model-Aware In-Context Learning for Code Generation
收藏 引用
ACM Transactions on software engineering and Methodology 1000年
作者: Jia Li Chongyang Tao Ge Li Zhi Jin Huangzhao Zhang Zheng Fang Fang Liu Key Lab of High Confidence Software Technology (Peking University) MoE China Beihang University China The State Key Laboratory of Software Development Environment (SKLSDE) SEI School of Computer Science & Engineering Beihang University China
Large Language Models (LLMs) have shown impressive In-Context Learning (ICL) ability in code generation. LLMs take a prompt context consisting of a few demonstration examples and a new requirement as input, and output... 详细信息
来源: 评论