咨询与建议

限定检索结果

文献类型

  • 108 篇 会议
  • 104 篇 期刊文献

馆藏范围

  • 212 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 168 篇 工学
    • 125 篇 计算机科学与技术...
    • 105 篇 软件工程
    • 31 篇 信息与通信工程
    • 22 篇 控制科学与工程
    • 14 篇 机械工程
    • 12 篇 生物工程
    • 11 篇 光学工程
    • 11 篇 生物医学工程(可授...
    • 8 篇 材料科学与工程(可...
    • 8 篇 电子科学与技术(可...
    • 7 篇 动力工程及工程热...
    • 7 篇 电气工程
    • 7 篇 化学工程与技术
    • 7 篇 交通运输工程
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 5 篇 土木工程
  • 65 篇 理学
    • 28 篇 数学
    • 17 篇 生物学
    • 11 篇 统计学(可授理学、...
    • 10 篇 物理学
    • 9 篇 化学
    • 9 篇 系统科学
  • 40 篇 管理学
    • 23 篇 管理科学与工程(可...
    • 20 篇 图书情报与档案管...
    • 11 篇 工商管理
  • 13 篇 医学
    • 12 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
  • 8 篇 法学
    • 6 篇 法学
  • 3 篇 经济学
  • 3 篇 农学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5 篇 semantics
  • 4 篇 computational mo...
  • 4 篇 machine learning
  • 4 篇 blockchain
  • 3 篇 scalability
  • 3 篇 regression analy...
  • 3 篇 computer archite...
  • 3 篇 big data
  • 3 篇 software as a se...
  • 3 篇 stochastic syste...
  • 3 篇 students
  • 3 篇 cloud computing
  • 3 篇 forecasting
  • 3 篇 data models
  • 2 篇 surveys
  • 2 篇 object detection
  • 2 篇 reinforcement le...
  • 2 篇 deep learning
  • 2 篇 deep neural netw...
  • 2 篇 safety

机构

  • 39 篇 state key labora...
  • 24 篇 state key lab of...
  • 21 篇 school of comput...
  • 17 篇 state key labora...
  • 8 篇 beijing advanced...
  • 7 篇 department of co...
  • 5 篇 university of ch...
  • 5 篇 state key lab of...
  • 4 篇 state key labora...
  • 4 篇 state key lab. o...
  • 4 篇 state key labora...
  • 4 篇 zhongguancun lab...
  • 4 篇 state key labora...
  • 3 篇 department of co...
  • 3 篇 hedps capt colle...
  • 3 篇 state key lab.of...
  • 3 篇 department of in...
  • 3 篇 school of comput...
  • 3 篇 department of co...
  • 3 篇 state key lab of...

作者

  • 8 篇 peng hao
  • 8 篇 li zhoujun
  • 8 篇 liu xianglong
  • 7 篇 xu ke
  • 6 篇 shilong ma
  • 6 篇 yu philip s.
  • 5 篇 tao dacheng
  • 4 篇 li jianxin
  • 4 篇 xu jun
  • 4 篇 gong ruihao
  • 4 篇 rui li
  • 4 篇 wenjun wu
  • 4 篇 wu wenjun
  • 3 篇 zhang duo
  • 3 篇 cai chun
  • 3 篇 zhang linfeng
  • 3 篇 liang peng
  • 3 篇 bai xiao
  • 3 篇 york darrin m.
  • 3 篇 meikang qiu

语言

  • 188 篇 英文
  • 23 篇 其他
  • 2 篇 中文
检索条件"机构=State Key Lab of Software Development Environment Department of Computer Science and Engineering"
212 条 记 录,以下是31-40 订阅
排序:
Large Language Model for science: A Study on P vs. NP
arXiv
收藏 引用
arXiv 2023年
作者: Dong, Qingxiu Dong, Li Xu, Ke Zhou, Guangyan Hao, Yaru Sui, Zhifang Wei, Furu Microsoft Research United States School of Computer Science Peking University China State Key Lab of Software Development Environment Beihang University China Department of Mathematics and Statistics Beijing Technology and Business University China
In this work, we use large language models (LLMs) to augment and accelerate research on the P versus NP problem, one of the most important open problems in theoretical computer science and mathematics. Specifically, w... 详细信息
来源: 评论
Character, Word, or Both? Revisiting the Segmentation Granularity for Chinese Pre-trained Language Models
arXiv
收藏 引用
arXiv 2023年
作者: Liang, Xinnian Zhou, Zefan Huang, Hui Wu, Shuangzhi Xiao, Tong Yang, Muyun Li, Zhoujun Bian, Chao State Key Lab of Software Development Environment Beihang University Beijing China School of Computer Science and Engineering Northeastern University Shenyang China Faculty of Computing Harbin Institute of Technology Harbin China Lark Platform Engineering-AI Beijing China
Pretrained language models (PLMs) have shown marvelous improvements across various NLP tasks. Most Chinese PLMs simply treat an input text as a sequence of characters, and completely ignore word information. Although ... 详细信息
来源: 评论
Multi-View Incongruity Learning for Multimodal Sarcasm Detection
arXiv
收藏 引用
arXiv 2024年
作者: Guo, Diandian Cao, Cong Yuan, Fangfang Liu, Yanbing Zeng, Guangjie Yu, Xiaoyan Peng, Hao Yu, Philip S. Institute of Information Engineering Chinese Academy of Sciences China School of Cyber Security University of Chinese Academy of Sciences China State Key Laboratory of Software Development Environment Beihang University China School of Computer Science and Technology Beijing Institute of Technology China Department of Computer Science University of Illinois Chicago United States
Multimodal sarcasm detection (MSD) is essential for various downstream tasks. Existing MSD methods tend to rely on spurious correlations. These methods often mistakenly prioritize non-essential features yet still make... 详细信息
来源: 评论
Container lifecycle-aware scheduling for serverless computing
Container lifecycle-aware scheduling for serverless computin...
收藏 引用
作者: Wu, Song Tao, Zhiheng Fan, Hao Huang, Zhuo Zhang, Xinmin Jin, Hai Yu, Chen Cao, Chun National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Cluster and Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology Wuhan China State Key Laboratory for Novel Software Technology Department of Computer Science and Technology Nanjing University Nanjing China
Elastic scaling in response to changes on demand is a main benefit of serverless computing. When bursty workloads arrive, a serverless platform launches many new containers and initializes function environments (known... 详细信息
来源: 评论
Time-Aware Missing Traffic Flow Prediction for Sensors with Privacy-Preservation  11th
Time-Aware Missing Traffic Flow Prediction for Sensors with ...
收藏 引用
11th International Conference on computer engineering and Networks, CENet2021
作者: Qi, Lianyong Wang, Fan Xu, Xiaolong Dou, Wanchun Zhang, Xuyun Khosravi, Mohammad R. Zhou, Xiaokang School of Computer Science Qufu Normal University Qufu China School of Computer and Software Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology Nanjing University of Information Science and Technology Nanjing China State Key Laboratory for Novel Software Technology Department of Computer Science and Technology Nanjing University Nanjing China Department of Computing Macquarie University SydneyNSW2109 Australia Department of Computer Engineering Persian Gulf University Bushehr Iran Department of Electrical and Electronic Engineering Shiraz University of Technology Shiraz Iran Faculty of Data Science Shiga University Hikone Japan
With the continuous development of IoT, a number of sensors establish on the roadside to monitor traffic conditions in real time. The continuously traffic data generated by these sensors makes traffic management feasi... 详细信息
来源: 评论
Programming by Example Made Easy
arXiv
收藏 引用
arXiv 2023年
作者: Wu, Jiarong Wei, Lili Jiang, Yanyan Cheung, Shing-Chi Ren, Luyao Xu, Chang Department of Computer Science and Engineering Hong Kong University of Science and Technology Hong Kong Department of Electrical and Computer Engineering McGill University Montreal Canada State Key Laboratory for Novel Software Technology Department of Computer Science and Technology Nanjing University Nanjing China Key Lab of High Confidence Software Technologies Ministry of Education Department of Computer Science and Technology EECS Peking University Beijing China
Programming by example (PBE) is an emerging programming paradigm that automatically synthesizes programs specified by user-provided input-output examples. Despite the convenience for end-users, implementing PBE tools ... 详细信息
来源: 评论
Improving variational autoencoders with density gap-based regularization  22
Improving variational autoencoders with density gap-based re...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Jianfei Zhang Jun Bai Chenghua Lin Yanmeng Wang Wenge Rong State Key Laboratory of Software Development Environment Beihang University China and School of Computer Science and Engineering Beihang University China Department of Computer Science University of Sheffield United Kingdom Ping An Technology China
Variational autoencoders (VAEs) are one of the most powerful unsupervised learning frameworks in NLP for latent representation learning and latent-directed generation. The classic optimization goal of VAEs is to maxim...
来源: 评论
Improving Variational Autoencoders with Density Gap-based Regularization
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Jianfei Bai, Jun Lin, Chenghua Wang, Yanmeng Rong, Wenge State Key Laboratory of Software Development Environment Beihang University China School of Computer Science and Engineering Beihang University China Department of Computer Science University of Sheffield United Kingdom Ping An Technology China
Variational autoencoders (VAEs) are one of the most powerful unsupervised learning frameworks in NLP for latent representation learning and latent-directed generation. The classic optimization goal of VAEs is to maxim... 详细信息
来源: 评论
Simple Image-level Classification Improves Open-vocabulary Object Detection
arXiv
收藏 引用
arXiv 2023年
作者: Fang, Ruohuan Pang, Guansong Bai, Xiao School of Computer Science and Engineering Beihang University China School of Computing and Information Systems Singapore Management University Singapore State Key Laboratory of Software Development Environment Jiangxi Research Institute Beihang University China
Open-Vocabulary Object Detection (OVOD) aims to detect novel objects beyond a given set of base categories on which the detection model is trained. Recent OVOD methods focus on adapting the image-level pre-trained vis... 详细信息
来源: 评论
DeepRicci: Self-supervised Graph Structure-Feature Co-Refinement for Alleviating Over-squashing
arXiv
收藏 引用
arXiv 2024年
作者: Sun, Li Huang, Zhenhao Wu, Hua Ye, Junda Peng, Hao Yu, Zhengtao Yu, Philip S. School of Control and Computer Engineering North China Electric Power University Beijing102206 China School of Computer Science Beijing University of Posts and Telecommunications Beijing100876 China State Key Laboratory of Software Development Environment Beihang University Beijing100191 China Faculty of Information Engineering and Automation Kunming University of Science and Technology Kunming650500 China Department of Computer Science University of Illinois ChicagoIL United States
Graph Neural Networks (GNNs) have shown great power for learning and mining on graphs, and Graph Structure Learning (GSL) plays an important role in boosting GNNs with a refined graph. In the literature, most GSL solu... 详细信息
来源: 评论