咨询与建议

限定检索结果

文献类型

  • 2,140 篇 会议
  • 1,763 篇 期刊文献
  • 14 册 图书

馆藏范围

  • 3,917 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,750 篇 工学
    • 2,044 篇 计算机科学与技术...
    • 1,703 篇 软件工程
    • 521 篇 信息与通信工程
    • 323 篇 控制科学与工程
    • 242 篇 生物工程
    • 212 篇 电子科学与技术(可...
    • 211 篇 电气工程
    • 172 篇 机械工程
    • 163 篇 光学工程
    • 129 篇 生物医学工程(可授...
    • 109 篇 仪器科学与技术
    • 109 篇 化学工程与技术
    • 100 篇 材料科学与工程(可...
    • 97 篇 动力工程及工程热...
    • 77 篇 网络空间安全
    • 69 篇 交通运输工程
    • 67 篇 建筑学
    • 59 篇 土木工程
  • 1,283 篇 理学
    • 770 篇 数学
    • 272 篇 生物学
    • 246 篇 物理学
    • 201 篇 统计学(可授理学、...
    • 131 篇 系统科学
    • 120 篇 化学
  • 757 篇 管理学
    • 457 篇 管理科学与工程(可...
    • 343 篇 图书情报与档案管...
    • 157 篇 工商管理
  • 104 篇 医学
    • 92 篇 临床医学
    • 74 篇 基础医学(可授医学...
  • 84 篇 法学
    • 63 篇 社会学
  • 57 篇 经济学
  • 38 篇 农学
  • 22 篇 教育学
  • 11 篇 艺术学
  • 9 篇 军事学
  • 8 篇 文学
  • 6 篇 哲学

主题

  • 102 篇 semantics
  • 69 篇 software enginee...
  • 66 篇 computer science
  • 64 篇 training
  • 62 篇 computational mo...
  • 57 篇 data mining
  • 56 篇 deep learning
  • 54 篇 web services
  • 50 篇 optimization
  • 49 篇 educational inst...
  • 49 篇 feature extracti...
  • 46 篇 algorithm design...
  • 45 篇 machine learning
  • 45 篇 clustering algor...
  • 45 篇 software
  • 40 篇 laboratories
  • 40 篇 cloud computing
  • 39 篇 data models
  • 37 篇 quality of servi...
  • 36 篇 authentication

机构

  • 293 篇 state key labora...
  • 213 篇 school of comput...
  • 200 篇 state key labora...
  • 150 篇 state key labora...
  • 106 篇 state key labora...
  • 90 篇 state key labora...
  • 86 篇 school of comput...
  • 85 篇 state key lab. o...
  • 74 篇 state key lab of...
  • 70 篇 school of comput...
  • 69 篇 computer school ...
  • 61 篇 state key lab. f...
  • 56 篇 university of ch...
  • 52 篇 school of comput...
  • 49 篇 state key labora...
  • 46 篇 state key labora...
  • 43 篇 state key labora...
  • 43 篇 school of comput...
  • 42 篇 department of co...
  • 40 篇 international sc...

作者

  • 41 篇 xiao limin
  • 39 篇 huang di
  • 35 篇 gao yang
  • 35 篇 shi yinghuan
  • 32 篇 liu jin
  • 31 篇 limin xiao
  • 30 篇 ruan li
  • 26 篇 dou wanchun
  • 22 篇 zhao jian
  • 22 篇 tao dacheng
  • 22 篇 bai xiao
  • 21 篇 he keqing
  • 21 篇 li yuanxiang
  • 21 篇 qi lei
  • 20 篇 shen furao
  • 20 篇 li bing
  • 20 篇 he yanxiang
  • 20 篇 du bo
  • 19 篇 qi lianyong
  • 19 篇 xu baowen

语言

  • 3,685 篇 英文
  • 130 篇 其他
  • 103 篇 中文
  • 1 篇 法文
检索条件"机构=State Key Lab of Software Engineering and School of Computer"
3917 条 记 录,以下是171-180 订阅
排序:
FEAT: Towards Fast Environment-Adaptive Task Offloading and Power Allocation in MEC  42
FEAT: Towards Fast Environment-Adaptive Task Offloading and ...
收藏 引用
42nd IEEE International Conference on computer Communications, INFOCOM 2023
作者: Ren, Tao Hu, Zheyuan He, Hang Niu, Jianwei Liu, Xuefeng Institute of Software Chinese Academy of Sciences Laboratory for Internet Software Technologies Beijing China Beihang University State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beijing China Zhongguancun Laboratory Beijing China Zhengzhou University Research Institute of Industrial Technology School of Information Engineering Zhengzhou University Zhengzhou China
Mobile edge computing (MEC) has been proposed to provide mobile devices with both satisfactory computing resources and latency. key issues in MEC include task offloading and power allocation (TOPA), for which deep rei... 详细信息
来源: 评论
Enabling Communication-Efficient Federated Learning via Distributed Compressed Sensing  42
Enabling Communication-Efficient Federated Learning via Dist...
收藏 引用
42nd IEEE International Conference on computer Communications, INFOCOM 2023
作者: Guan, Yixuan Liu, Xuefeng Ren, Tao Niu, Jianwei Beihang University State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beijing China Zhongguancun Laboratory Beijing China Chinese Academy of Sciences Laboratory for Internet Software Technologies Institute of Software Beijing China Zhengzhou University Research Institute of Industrial Technology School of Information Engineering Zhengzhou University Zhengzhou China
Federated learning (FL) trains a shared global model by periodically aggregating gradients from local devices. Communication overhead becomes a principal bottleneck in FL since participating devices usually suffer fro... 详细信息
来源: 评论
Adaptively feature matching via joint transformational-spatial clustering
Adaptively feature matching via joint transformational-spati...
收藏 引用
作者: Wang, Linbo Tan, Li Fang, Xianyong Guo, Yanwen Wan, Shaohua MOE Key Laboratory of Intelligent Computing and Signal Processing School of Computer Science and Technology Anhui University Hefei China National Key Lab for Novel Software Technology Nanjing University Nanjing China School of Information and Safety Engineering Zhongnan University of Economics and Law Wuhan China
The transformational and spatial proximities are important cues for identifying inliers from an appearance based match set because correct matches generally stay close in input images and share similar local transform... 详细信息
来源: 评论
TDID: Transparent and Efficient Decentralized Identity Management with Blockchain
TDID: Transparent and Efficient Decentralized Identity Manag...
收藏 引用
2023 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2023
作者: Hao, Jiakun Gao, Jianbo Xiang, Peng Zhang, Jiashuo Chen, Ziming Hu, Hao Chen, Zhong School of Computer Science Peking University Beijing China Peking University Chongqing Research Institute of Big Data Chongqing China Nanjing University State Key Lab for Novel Software Technology Jiangsu Nanjing China
Decentralized identity (DID) is an identity management framework aiming to return the ownership of an identity to its corresponding user. Recent studies propose to store the identifiers of DID issuers and implement id... 详细信息
来源: 评论
Generating Targeted Universal Adversarial Perturbation against Automatic Speech Recognition via Phoneme Tailoring
Generating Targeted Universal Adversarial Perturbation again...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Zhang, Yujun Chen, Yanqu Wang, Jiakai Hu, Jin Tao, Renshuai Liu, Xianglong State Key Laboratory of Complex & Critical Software Environment Beihang University China School of Computer Science and Engineering Beihang University China College of Computer Science Beijing University of Technology China Zhongguancun Laboratory China School of Computer and Information Technology Beijing Jiaotong University China Institute of Data Space Hefei Comprehensive National Science Center China
There is a growing concern about adversarial attacks against automatic speech recognition (ASR) systems. Although research into targeted universal adversarial examples (AEs) has progressed, current methods are constra... 详细信息
来源: 评论
Towards better dynamic graph learning: new architecture and unified library  23
Towards better dynamic graph learning: new architecture and ...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Le Yu Leilei Sun Bowen Du Weifeng Lv State Key Laboratory of Software Development Environment School of Computer Science and Engineering Beihang University
We propose DyGFormer, a new Transformer-based architecture for dynamic graph learning. DyGFormer is conceptually simple and only needs to learn from nodes' historical first-hop interactions by: (i) a neighbor co-o...
来源: 评论
TrustFed: A Reliable Federated Learning Framework With Malicious-Attack Resistance
收藏 引用
IEEE Transactions on Cognitive Communications and Networking 2024年
作者: Su, Hang Zhou, Jianhong Feng, Gang Niu, Xianhua Xihua University School of Computer and Software Engineering Chengdu China University of Electronic Science and Technology of China National Key Lab on Communications Chengdu China
As a key technology in 6G research, federated learning (FL) enables collaborative learning in resource-constrained edge networks while ensuring individual data privacy. However, traditional federated learning still ha... 详细信息
来源: 评论
Active perception for grasp detection via neural graspness field  24
Active perception for grasp detection via neural graspness f...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Haoxiang Ma Modi Shi Boyang Gao Di Huang State Key Laboratory of Complex and Critical Software Environment School of Computer Science and Engineering Beihang University Beijing China Geometry Robotics
This paper tackles the challenge of active perception for robotic grasp detection in cluttered environments. Incomplete 3D geometry information can negatively affect the performance of learning-based grasp detection m...
来源: 评论
A Privacy Preserving Method for IoT Forensics
A Privacy Preserving Method for IoT Forensics
收藏 引用
2024 IEEE Global Communications Conference, GLOBECOM 2024
作者: Zhang, Wenzheng Chen, Boxi Fu, Xiao Gu, Qing Shi, Jin Du, Xiaojiang Zhou, Xiaoyang Nanjing University State Key Laboratory for Novel Software Technology Nanjing China Nanjing University School of Information Management Nanjing China Stevens Institute of Technology Department of Electrical and Computer Engineering HobokenNJ United States Innovation Research Institute Nanjing China
The diversity of the Internet of Things (IoT) poses challenges to privacy protection, especially in the field of digital forensics. How to ensure that only the private information of the suspect is provided, and not t... 详细信息
来源: 评论
Advswap: Covert Adversarial Perturbation with High Frequency Info-Swapping for Autonomous Driving Perception  27
Advswap: Covert Adversarial Perturbation with High Frequency...
收藏 引用
27th IEEE International Conference on Intelligent Transportation Systems, ITSC 2024
作者: Huang, Yuanhao Zhang, Qinfan Xing, Jiandong Cheng, Mengyue Yu, Haiyang Ren, Yilong Xiong, Xiao School of Transportation Science and Engineering Beihang University Beijing100191 China State Key Lab of Intelligent Transportation System Beijing100191 China Zhongguancun Laboratory Beijing100094 China University of Alberta Department of Electrical and Computer Engineering Edmonton Canada
Perception module of Autonomous vehicles (AVs) are increasingly susceptible to be attacked, which exploit vulnerabilities in neural networks through adversarial inputs, thereby compromising the AI safety. Some researc...
来源: 评论