咨询与建议

限定检索结果

文献类型

  • 298 篇 会议
  • 207 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 506 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 352 篇 工学
    • 271 篇 计算机科学与技术...
    • 223 篇 软件工程
    • 72 篇 信息与通信工程
    • 38 篇 控制科学与工程
    • 28 篇 生物工程
    • 25 篇 机械工程
    • 24 篇 光学工程
    • 19 篇 电子科学与技术(可...
    • 17 篇 仪器科学与技术
    • 16 篇 交通运输工程
    • 14 篇 生物医学工程(可授...
    • 13 篇 材料科学与工程(可...
    • 13 篇 电气工程
    • 13 篇 建筑学
    • 12 篇 动力工程及工程热...
    • 11 篇 安全科学与工程
    • 10 篇 土木工程
    • 8 篇 化学工程与技术
    • 6 篇 网络空间安全
  • 134 篇 理学
    • 81 篇 数学
    • 28 篇 生物学
    • 25 篇 统计学(可授理学、...
    • 19 篇 物理学
    • 16 篇 系统科学
    • 14 篇 化学
  • 93 篇 管理学
    • 59 篇 管理科学与工程(可...
    • 44 篇 图书情报与档案管...
    • 22 篇 工商管理
  • 9 篇 法学
  • 8 篇 医学
    • 7 篇 临床医学
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 4 篇 哲学
  • 3 篇 农学
  • 2 篇 教育学
  • 2 篇 文学
  • 1 篇 艺术学

主题

  • 14 篇 semantics
  • 11 篇 object detection
  • 10 篇 servers
  • 9 篇 feature extracti...
  • 9 篇 software
  • 9 篇 heuristic algori...
  • 7 篇 educational inst...
  • 7 篇 computational mo...
  • 7 篇 machine learning
  • 7 篇 computer vision
  • 7 篇 training
  • 6 篇 semantic segment...
  • 6 篇 deep learning
  • 6 篇 programming
  • 6 篇 safety
  • 6 篇 optimization
  • 6 篇 resource allocat...
  • 6 篇 blockchain
  • 6 篇 satellites
  • 6 篇 privacy

机构

  • 180 篇 school of comput...
  • 159 篇 state key labora...
  • 112 篇 state key labora...
  • 47 篇 state key labora...
  • 23 篇 state key lab of...
  • 20 篇 institute of art...
  • 13 篇 zhongguancun lab...
  • 12 篇 beijing advanced...
  • 12 篇 hangzhou innovat...
  • 11 篇 school of comput...
  • 7 篇 state key lab. o...
  • 7 篇 state key labora...
  • 7 篇 sino-french engi...
  • 6 篇 national lab. of...
  • 6 篇 school of mechan...
  • 5 篇 shen yuan honors...
  • 5 篇 school of artifi...
  • 5 篇 beihang universi...
  • 5 篇 beihang universi...
  • 5 篇 school of comput...

作者

  • 41 篇 xiao limin
  • 31 篇 huang di
  • 30 篇 ruan li
  • 29 篇 limin xiao
  • 20 篇 li ruan
  • 18 篇 zhang xiong
  • 17 篇 hao sheng
  • 14 篇 bai xiao
  • 14 篇 di huang
  • 11 篇 wang yunhong
  • 10 篇 li zhoujun
  • 10 篇 chen jiaxin
  • 10 篇 zhu mingfa
  • 10 篇 xu ke
  • 9 篇 liu xianglong
  • 8 篇 wenge rong
  • 8 篇 yang hongyu
  • 8 篇 li yongnan
  • 8 篇 luo jie
  • 7 篇 peng hao

语言

  • 440 篇 英文
  • 58 篇 其他
  • 10 篇 中文
检索条件"机构=State Key Lab. Of Software Development Environment School of Computer Science & Engineering"
506 条 记 录,以下是251-260 订阅
排序:
Potential Indicator for Continuous Emotion Arousal by Dynamic Neural Synchrony
arXiv
收藏 引用
arXiv 2025年
作者: Pan, Guandong Wu, Zhaobang Yang, Yaqian Wang, Xin Liu, Longzhao Zheng, Zhiming Tang, Shaoting School of Computer Science and Engineering Beihang University Beijing100191 China Institute of Artificial Intelligence Beihang University Beijing100191 China Key laboratory of Mathematics Informatics and Behavioral Semantics Beihang University Beijing100191 China Institute of Medical Artificial Intelligence Binzhou Medical University Yantai264003 China Zhongguancun Laboratory Beijing100094 China Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing Beihang University Beijing100191 China PengCheng Laboratory Shenzhen518055 China State Key Lab of Software Development Environment Beihang University Beijing100191 China
The need for automatic and high-quality emotion annotation is paramount in applications such as continuous emotion recognition and video highlight detection, yet achieving this through manual human annotations is chal... 详细信息
来源: 评论
Joint lifelong topic model and manifold ranking for document summarization
arXiv
收藏 引用
arXiv 2019年
作者: Lin, J Ianying Liu, Rui Ia, Quanye J. State Key Laboratory of Software Development Environment Beihang University Beijing China School of Computer Science and Engineering Beihang University Beijing China
Due to the manifold ranking method has a significant effect on the ranking of unknown data based on known data by using a weighted network, many researchers use the man- ifold ranking method to solve the document summ... 详细信息
来源: 评论
LSTM Based Semi-Supervised Attention Framework for Sentiment Analysis
LSTM Based Semi-Supervised Attention Framework for Sentiment...
收藏 引用
Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing, UIC-ATC
作者: Hanxue Ji Wenge Rong Jingshuang Liu Yuanxin Ouyang Zhang Xiong State Key Laboratory of Software Development Environment Beihang University Beijing China School of Computer Science and Engineering Beihang University Beijing China
With the rapid development of Internet technology and social media, people are accustomed to making comments on the Internet. Sentiment analysis, as an efficient technique, has been used by researchers in the tasks of... 详细信息
来源: 评论
A cooperative scheduling framework for shared transportation services  19
A cooperative scheduling framework for shared transportation...
收藏 引用
19th COTA International Conference of Transportation Professionals: Transportation in China - Connecting the World, CICTP 2019
作者: Wang, Xinli Qiao, Yanan Wang, Tianyu Guo, Jifu Zhou, Xuesong Xian, Kai Tong, Lu Carol Xie, Jindong Natl. Eng. Lab. for Compreh. Transp. Big Data Applic. Technol. Sch. of Transp. Sci. and Engineering Beihang Univ. Beijing100191 China State Key Lab of Software Development Environment School of Computer Science and Engineering Beihang Univ. Beijing100191 China Beijing Transport Institute No. 9 LiuLiQiao South Lane Fengtai District China
To improve the efficiency of metropolitan shared transportation services (STS), this paper proposes a cooperative scheduling framework to avoid congestion. Two procedures are considered: shared path scheduling and con... 详细信息
来源: 评论
Learning with noisy lab.ls for sentence-level sentiment classification
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Hao Liu, Bing Li, Chaozhuo Yang, Yan Li, Tianrui School of Information Science and Technology Southwest Jiaotong University Department of Computer Science University of Illinois at Chicago State Key Lab of Software Development Environment Beihang University
Deep neural networks (DNNs) can fit (or even over-fit) the training data very well. If a DNN model is trained using data with noisy lab.ls and tested on data with clean lab.ls, the model may perform poorly. This paper... 详细信息
来源: 评论
A split-and-recombine approach for follow-up query analysis
arXiv
收藏 引用
arXiv 2019年
作者: Liu, Qian Chen, Bei Liu, Haoyan Lou, Jian-Guang Fang, Lei Zhou, Bin Zhang, Dongmei State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang University China State Key Lab of Software Development Environment Beihang University China Microsoft Research Beijing China
Context-dependent semantic parsing has proven to be an important yet challenging task. To leverage the advances in context-independent semantic parsing, we propose to perform follow-up query analysis, aiming to restat... 详细信息
来源: 评论
Personalized group of readers' emotion traits modeling based on sentimental analysis of novels
Personalized group of readers' emotion traits modeling based...
收藏 引用
IEEE International Conference on Cognitive Informatics
作者: Yuya Hatakeyama Runhe Huang Bowen Du Neil Yen Haiquan Wang Graduate School of C.I.S Hosei University Japan State Key Lab of Software Development Environment Beihang University China School of Computer Science and Engineering University of Aizu Japan College of Software Beihang University China
Studies concerning sentiment analysis haven drawn attentions from a wide spectrum of researchers in the past few years. One of the most eye-catching topics within this emerging field is how emotion can be dectected an... 详细信息
来源: 评论
DPA-2: a large atomic model as a multi-task learner
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Duo Liu, Xinzijian Zhang, Xiangyu Zhang, Chengqian Cai, Chun Bi, Hangrui Du, Yiming Qin, Xuejian Peng, Anyang Huang, Jiameng Li, Bowen Shan, Yifan Zeng, Jinzhe Zhang, Yuzhi Liu, Siyuan Li, Yifan Chang, Junhan Wang, Xinyan Zhou, Shuo Liu, Jianchuan Luo, Xiaoshan Wang, Zhenyu Jiang, Wanrun Wu, Jing Yang, Yudi Yang, Jiyuan Yang, Manyi Gong, Fu-Qiang Zhang, Linshuang Shi, Mengchao Dai, Fu-Zhi York, Darrin M. Liu, Shi Zhu, Tong Zhong, Zhicheng Lv, Jian Cheng, Jun Jia, Weile Chen, Mohan Ke, Guolin Weinan, E. Zhang, Linfeng Wang, Han AI for Science Institute Beijing100080 China DP Technology Beijing100080 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences Beijing100871 China University of Chinese Academy of Sciences Beijing100871 China HEDPS CAPT College of Engineering Peking University Beijing100871 China Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo315201 China CAS Key Laboratory of Magnetic Materials and Devices Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology Chinese Academy of Sciences Ningbo315201 China School of Electronics Engineering and Computer Science Peking University Beijing100871 China Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai200062 China Laboratory for Biomolecular Simulation Research Institute for Quantitative Biomedicine Department of Chemistry and Chemical Biology Rutgers University PiscatawayNJ08854 United States Department of Chemistry Princeton University PrincetonNJ08540 United States College of Chemistry and Molecular Engineering Peking University Beijing100871 China Yuanpei College Peking University Beijing100871 China School of Electrical Engineering and Electronic Information Xihua University Chengdu610039 China State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun130012 China Key Laboratory of Material Simulation Methods & Software of Ministry of Education College of Physics Jilin University Changchun130012 China International Center of Future Science Jilin University Changchun130012 China Key Laboratory for Quantum Materials of Zhejiang Province Department of Physics School of Science Westlake University Zhejiang Hangzhou310030 China Atomistic Simulations Italia
The rapid advancements in artificial intelligence (AI) are catalyzing transformative changes in atomic modeling, simulation, and design. AI-driven potential energy models have demonstrated the capability to conduct la... 详细信息
来源: 评论
Front Cover: AuNP-Modulated qPCR: An Optimized System for Detecting MIR Biophotons Released in DNA Replication (Chem. Eur. J. 8/2023)
收藏 引用
Chemistry – A European Journal 2023年 第8期29卷
作者: Yu Yang Prof. Dr. Daoling Peng Prof. Dr. Zhenglong Gu Prof. Dr. Lei Jiang Prof. Dr. Bo Song State Key Laboratory of Genetic Engineering Collaborative Innovation Center of Genetics and Development School of Life Sciences Fudan University 200438 Shanghai P. R. China Key Laboratory of Theoretical Chemistry of Environment Ministry of Education School of Environment South China Normal University 510006 Guangzhou P. R. China Key Laboratory of Optical Technology and Instrument for Medicine Ministry of Education Shanghai Key Lab of Modern Optical System School of Optical-Electrical Computer Engineering University of Shanghai for Science and Technology 200093 Shanghai P. R. China Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China School of Future Technology University of Chinese Academy of Sciences 100049 Beijing P. R. China
来源: 评论
Adaptive unimodal cost volume filtering for deep stereo matching
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Youmin Chen, Yimin Bai, Xiao Yu, Suihanjin Yu, Kun Li, Zhiwei Yang, Kuiyuan State Key Laboratory of Software Development Environment School of Computer Science and Engineering Beijing Advanced Innovation Center for Big Data and Brain Computing Jiangxi Research Institute Beihang University Beijing China DeepMotion
state-of-the-art deep learning based stereo matching approaches treat disparity estimation as a regression problem, where loss function is directly defined on true disparities and their estimated ones. However, dispar... 详细信息
来源: 评论