咨询与建议

限定检索结果

文献类型

  • 589 篇 会议
  • 536 篇 期刊文献

馆藏范围

  • 1,125 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 901 篇 工学
    • 551 篇 计算机科学与技术...
    • 402 篇 电气工程
    • 322 篇 控制科学与工程
    • 194 篇 软件工程
    • 154 篇 交通运输工程
    • 84 篇 信息与通信工程
    • 61 篇 机械工程
    • 43 篇 仪器科学与技术
    • 40 篇 土木工程
    • 33 篇 生物工程
    • 23 篇 电子科学与技术(可...
    • 17 篇 公安技术
    • 16 篇 安全科学与工程
    • 15 篇 生物医学工程(可授...
    • 14 篇 化学工程与技术
    • 12 篇 光学工程
  • 162 篇 理学
    • 92 篇 数学
    • 45 篇 生物学
    • 40 篇 系统科学
    • 32 篇 统计学(可授理学、...
    • 19 篇 物理学
    • 11 篇 化学
  • 153 篇 管理学
    • 133 篇 管理科学与工程(可...
    • 39 篇 工商管理
    • 13 篇 图书情报与档案管...
  • 38 篇 医学
    • 27 篇 临床医学
    • 18 篇 基础医学(可授医学...
  • 22 篇 法学
    • 14 篇 社会学
  • 17 篇 经济学
    • 17 篇 应用经济学
  • 13 篇 教育学
    • 12 篇 教育学
  • 12 篇 农学
  • 10 篇 艺术学
  • 6 篇 文学
  • 1 篇 历史学

主题

  • 49 篇 training
  • 46 篇 deep learning
  • 46 篇 computational mo...
  • 41 篇 task analysis
  • 39 篇 feature extracti...
  • 30 篇 predictive model...
  • 30 篇 blockchain
  • 29 篇 neural networks
  • 28 篇 data models
  • 24 篇 vehicles
  • 23 篇 reinforcement le...
  • 23 篇 roads
  • 21 篇 parallel intelli...
  • 21 篇 transportation
  • 20 篇 automation
  • 20 篇 trajectory
  • 19 篇 optimization
  • 19 篇 machine learning
  • 18 篇 autonomous vehic...
  • 17 篇 artificial intel...

机构

  • 434 篇 chinese acad sci...
  • 208 篇 qingdao acad int...
  • 144 篇 univ chinese aca...
  • 81 篇 qingdao academy ...
  • 55 篇 school of artifi...
  • 52 篇 chinese acad sci...
  • 51 篇 univ chinese aca...
  • 51 篇 state key labora...
  • 50 篇 state key labora...
  • 48 篇 the state key la...
  • 45 篇 the state key la...
  • 43 篇 state key labora...
  • 42 篇 chinese acad sci...
  • 40 篇 chinese acad sci...
  • 35 篇 sun yat sen univ...
  • 34 篇 xi an jiao tong ...
  • 34 篇 chinese acad sci...
  • 33 篇 beijing engineer...
  • 32 篇 macau univ sci &...
  • 31 篇 natl univ def te...

作者

  • 310 篇 wang fei-yue
  • 134 篇 xiong gang
  • 92 篇 wang xiao
  • 78 篇 fei-yue wang
  • 74 篇 yuan yong
  • 69 篇 shen zhen
  • 59 篇 gang xiong
  • 56 篇 dong xisong
  • 53 篇 lv yisheng
  • 52 篇 gou chao
  • 46 篇 zhu fenghua
  • 46 篇 qin rui
  • 42 篇 li juanjuan
  • 39 篇 liu xiwei
  • 36 篇 zheng wenbo
  • 36 篇 yan lan
  • 34 篇 shang xiuqin
  • 30 篇 tan min
  • 28 篇 hu bin
  • 26 篇 zhen shen

语言

  • 1,100 篇 英文
  • 15 篇 其他
  • 10 篇 中文
  • 1 篇 法文
检索条件"机构=State Key Lab. of Intelligent Control and Management of Complex Systems"
1125 条 记 录,以下是611-620 订阅
排序:
3D Printer Optical Detection System Based On DLP Projection Technology
3D Printer Optical Detection System Based On DLP Projection ...
收藏 引用
Chinese Automation Congress (CAC)
作者: Wu, Guoliang Shen, Zhen Shang, Xiuqin Wu, Huaiyu Xiong, Gang Yang, Jing Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China Beijing Univ Chem Technol Coll Informat Sci & Technol Beijing 102202 Peoples R China Qingdao Acad Intelligent Ind Qingdao 266000 Peoples R China Chinese Acad Sci Inst Automat Beijing Engn Res Ctr Intelligent Syst & Technol Beijing 100190 Peoples R China Chinese Acad Sci Cloud Comp Ctr Dongguan 523808 Peoples R China
In order to solve the printing failure caused by the projection part of the light source in the 3D printing process, this paper proposes a system adjustment scheme. By analyzing the polymerization state of the photose... 详细信息
来源: 评论
Forest Representation Learning with Multiscale Contour Feature Learning for Leaf Cultivar Classification
Forest Representation Learning with Multiscale Contour Featu...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine
作者: Wenbo Zheng Chao Gou Lan Yan School of Software Engineering Xi'an Jiaotong University Chinese Academy of Sciences School of Intelligent Systems Engineering Sun Yat-sen University Chinese Academy of Sciences The State Key Laboratory for Management and Control of Complex Systems Institute of Automation Chinese Academy of Sciences
Automated plant species identification system could help botanists and layman in identifying plant species rapidly. Deep learning is robust for feature extraction as it is superior in providing deeper information of i... 详细信息
来源: 评论
From AR to AI: Augmentation Technology for intelligent Surgery and Medical Treatments
收藏 引用
IFAC-PapersOnLine 2020年 第5期53卷 792-796页
作者: Mei Zhang Zhicheng Zhang Xiao Wang Hui Yu Yifan Xia Kanran Tan Fei-Yue Wang The State Key Laboratory for Management and Control of Complex Systems Institute of Automation Chinese Academy of Sciences Beijing 100190 China and also with the Qingdao Academy of Intelligent Industries Qingdao 266109 China The Department of the 7th Medical Center of PLA General Hospital Beijing 100700 China The Department of Computer Science Purdue University West Lafayette Indiana 47906 USA The School of Creative Technologies University of Portsmouth UK The Department of Computer Science Johns Hopkins University Baltimore Maryland USA
With the development of augmented reality (AR) technologies, more and more approaches are proposed for medical applications. With the help of AR technology, the doctor can highly improve the spatial perception and obt... 详细信息
来源: 评论
A Novel Geometric Transportation Approach for Multiple Mobile Manipulators in Unknown Environments
收藏 引用
IEEE systems JOURNAL 2018年 第2期12卷 1447-1455页
作者: Cao, Zhiqiang Gu, Nong Jiao, Jile Nahavandi, Saeid Zhou, Chao Tan, Min Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China Univ Chinese Acad Sci Beijing 101408 Peoples R China Deakin Univ Inst Intelligent Syst Res & Innovat Waurn Ponds Vic 3216 Australia
In this paper, a geometric transportation approach is proposed for multiple mobile manipulators transporting a large object in unknown environments. The candidate interval of system width is first determined based on ... 详细信息
来源: 评论
Two-timescale voltage control in distribution grids using deep reinforcement learning
arXiv
收藏 引用
arXiv 2019年
作者: Yang, Qiuling Wang, Gang Sadeghi, Alireza Giannakis, Georgios B. Sun, Jian State Key Lab of Intelligent Control and Decision of Complex Systems School of Automation Beijing Institute of Technology Beijing100081 China Department of Electrical and Computer Engineering University of Minnesota MinneapolisMN55455 United States
Modern distribution grids are currently being challenged by frequent and sizable voltage fluctuations, due mainly to the increasing deployment of electric vehicles and renewable generators. Existing approaches to main... 详细信息
来源: 评论
A cooperative spectrum sensing method based on information geometry and fuzzy c-means clustering algorithm
收藏 引用
EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING 2019年 第1期2019卷 1页
作者: Zhang, Shunchao Wang, Yonghua Li, Jiangfan Wan, Pin Zhang, Yongwei Li, Nan Guangdong Univ Technol Sch Automat Guangzhou 510006 Guangdong Peoples R China Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China South Cent Univ Nationalities Hubei Key Lab Intelligent Wireless Commun Wuhan 430074 Hubei Peoples R China
To improve spectrum sensing performance, a cooperative spectrum sensing method based on information geometry and fuzzy c-means clustering algorithm is proposed in this paper. In the process of signal feature extractio... 详细信息
来源: 评论
A statistical learning approach to reactive power control in distribution systems
arXiv
收藏 引用
arXiv 2019年
作者: Yang, Qiuling Sadeghi, Alireza Wang, Gang Giannakis, Georgios B. Sun, Jian State Key Lab of Intelligent Control and Decision of Complex Systems School of Automation Beijing Institute of Technology Beijing100081 China Department of Electrical and Computer Engineering University of Minnesota MinneapolisMN55455 United States
Pronounced variability due to the growth of renewable energy sources, flexible loads, and distributed generation is challenging residential distribution systems. This context, motivates well fast, efficient, and robus... 详细信息
来源: 评论
A Cooperative Spectrum Sensing Method Based on Empirical Mode Decomposition and Information Geometry in complex Electromagnetic Environment
收藏 引用
complexITY 2019年 第1期2019卷
作者: Wang, Yonghua Zhang, Shunchao Zhang, Yongwei Wan, Pin Li, Jiangfan Li, Nan Guangdong Univ Technol Sch Automat Guangzhou 510006 Guangdong Peoples R China Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China South Cent Univ Nationalities Hubei Key Lab Intelligent Wireless Commun Wuhan 430074 Hubei Peoples R China
In a complex electromagnetic environment, there are cases where the noise is uncertain and difficult to estimate, which poses a great challenge to spectrum sensing systems. This paper proposes a cooperative spectrum s... 详细信息
来源: 评论
Analyzing and optimizing yield formation of tomato introgression lines using plant model
收藏 引用
EUPHYTICA 2021年 第6期217卷 100-100页
作者: Kang, Mengzhen Wang, Xiujuan Qi, Rui Jia, Zhi-Qi de Reffye, Philippe Huang, San-Wen Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China Univ Chinese Acad Sci Sch Artificial Intelligence Beijing 100949 Peoples R China Chinese Acad Sci Beijing Engn Res Ctr Intelligent Syst & Technol Inst Automat Beijing 100190 Peoples R China Amadeus 485 Route Pin Montard F-06410 Biot France Coll Hort Henan Agr Univ Zhengzhou 450002 Peoples R China Univ Montpellier CNRS AMAP CIRADINRAIRD F-34000 Montpellier France Chinese Acad Agr Sci Agr Genomes Inst Shenzhen Shenzhen 518124 Peoples R China
Generally, the relation between quantitative trait loci (QTLs) and yield is empirical, and their roles in source-sink dynamics are unclear. A tomato introgression line (IL) population (S. pennellii ILs) was applied to... 详细信息
来源: 评论
Differential-Evolution-Based Generative Adversarial Networks for Edge Detection
Differential-Evolution-Based Generative Adversarial Networks...
收藏 引用
International Conference on Computer Vision Workshops (ICCV Workshops)
作者: Wenbo Zheng Chao Gou Lan Yan Fei-Yue Wang School of Software Engineering Xi'an Jiaotong University The State Key Laboratory for Management and Control of Complex Systems Institute of Automation Chinese Academy of Sciences School of Intelligent Systems Engineering Sun Yat-sen University School of Artificial Intelligence University of Chinese Academy of Sciences
Since objects in natural scenarios possess various scales and aspect ratios, learning the rich edge information is very critical for vision-based tasks. Conventional generative adversarial networks (GANs) based method... 详细信息
来源: 评论