咨询与建议

限定检索结果

文献类型

  • 387 篇 会议
  • 381 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 770 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 485 篇 工学
    • 305 篇 计算机科学与技术...
    • 192 篇 软件工程
    • 75 篇 核科学与技术
    • 64 篇 电子科学与技术(可...
    • 56 篇 信息与通信工程
    • 40 篇 动力工程及工程热...
    • 36 篇 生物工程
    • 35 篇 控制科学与工程
    • 25 篇 电气工程
    • 22 篇 机械工程
    • 14 篇 化学工程与技术
    • 14 篇 生物医学工程(可授...
    • 13 篇 建筑学
    • 12 篇 土木工程
    • 11 篇 材料科学与工程(可...
    • 11 篇 网络空间安全
    • 10 篇 光学工程
    • 10 篇 安全科学与工程
    • 9 篇 环境科学与工程(可...
  • 279 篇 理学
    • 173 篇 物理学
    • 76 篇 数学
    • 37 篇 生物学
    • 18 篇 统计学(可授理学、...
    • 17 篇 化学
    • 17 篇 系统科学
  • 85 篇 管理学
    • 70 篇 管理科学与工程(可...
    • 22 篇 工商管理
    • 15 篇 图书情报与档案管...
  • 14 篇 医学
    • 12 篇 基础医学(可授医学...
    • 12 篇 临床医学
  • 7 篇 经济学
  • 5 篇 法学
  • 5 篇 农学
  • 2 篇 军事学
  • 1 篇 教育学

主题

  • 106 篇 hadron colliders
  • 30 篇 hardware
  • 28 篇 w & z bosons
  • 24 篇 computer archite...
  • 24 篇 higgs bosons
  • 21 篇 benchmark testin...
  • 16 篇 optimization
  • 16 篇 computational mo...
  • 16 篇 system-on-chip
  • 16 篇 benchmarking
  • 16 篇 cms
  • 15 篇 neural networks
  • 15 篇 bandwidth
  • 15 篇 top quark
  • 14 篇 deep learning
  • 13 篇 registers
  • 13 篇 delays
  • 13 篇 big data
  • 13 篇 random access me...
  • 13 篇 program processo...

机构

  • 224 篇 state key labora...
  • 163 篇 university of ch...
  • 151 篇 centro brasileir...
  • 151 篇 yerevan physics ...
  • 151 篇 charles universi...
  • 150 篇 national and kap...
  • 150 篇 istanbul technic...
  • 150 篇 indian institute...
  • 149 篇 university of sp...
  • 149 篇 department of ph...
  • 148 篇 universidad iber...
  • 148 篇 university of de...
  • 148 篇 indian institute...
  • 147 篇 rwth aachen univ...
  • 147 篇 institute for nu...
  • 146 篇 brunel universit...
  • 146 篇 academy of scien...
  • 146 篇 imperial college...
  • 145 篇 centro de invest...
  • 139 篇 università di to...

作者

  • 113 篇 g. tonelli
  • 113 篇 d. barney
  • 113 篇 l. valencia palo...
  • 113 篇 t. liu
  • 113 篇 c. hensel
  • 113 篇 a. garcia-bellid...
  • 113 篇 a. steen
  • 113 篇 n. cartiglia
  • 113 篇 n. colino
  • 113 篇 f. moortgat
  • 113 篇 b. clerbaux
  • 113 篇 g. sultanov
  • 113 篇 m. a. ciocci
  • 113 篇 k. lamichhane
  • 113 篇 s. maselli
  • 112 篇 a. babaev
  • 112 篇 v. karjavine
  • 112 篇 e. migliore
  • 112 篇 p. avery
  • 112 篇 l. silvestris

语言

  • 732 篇 英文
  • 37 篇 中文
  • 3 篇 其他
检索条件"机构=State Key Laboratory Computer Architecture"
770 条 记 录,以下是151-160 订阅
排序:
Pinpointing the Memory Behaviors of DNN Training
Pinpointing the Memory Behaviors of DNN Training
收藏 引用
IEEE International Symposium on Performance Analysis of Systems and Software
作者: Jiansong Li Xiao Dong Guangli Li Peng Zhao Xueying Wang Xiaobing Chen Xianzhi Yu Yongxin Yang Zihan Jiang Wei Cao Lei Liu Xiaobing Feng University of Chinese Academy of Sciences Beijing China Youtu Lab Tencent Shanghai China Huawei Technology Co. Ltd Beijing China State Key Laboratory of Computer Architecture Institute of Computing Technology CAS Beijing China
The training of deep neural networks (DNNs) is usually memory-hungry due to the limited device memory capacity of DNN accelerators. Characterizing the memory behaviors of DNN training is critical to optimize the devic... 详细信息
来源: 评论
Pinpointing the memory behaviors of DNN training
arXiv
收藏 引用
arXiv 2021年
作者: Li, Jiansong Dong, Xiao Li, Guangli Zhao, Peng Wang, Xueying Chen, Xiaobing Yu, Xianzhi Yang, Yongxin Jiang, Zihan Cao, Wei Liu, Lei Feng, Xiaobing State Key Laboratory of Computer Architecture Institute of Computing Technology CAS Beijing China University of Chinese Academy of Sciences Beijing China Youtu Lab Tencent Shanghai China Huawei Technology Co. Ltd Beijing China
The training of deep neural networks (DNNs) is usually memory-hungry due to the limited device memory capacity of DNN accelerators. Characterizing the memory behaviors of DNN training is critical to optimize the devic... 详细信息
来源: 评论
Software Defect Prediction via Deep Belief Network
收藏 引用
Chinese Journal of Electronics 2019年 第5期28卷 925-932页
作者: WEI Hua SHAN Chun HU Changzhen ZHANG Yu YU Xiao School of Computer Science and Technology Beijing Institute of Technology China Information Technology Security Evaluation Center Beijing Key Laboratory of Software Security Engineering Technology Beijing Institute of Technology School of Electrical and Information Engineering and Beijing Key Laboratory of Intelligent Processing for Building Big Data Beijing University of Civil Engineering and Architecture State Key Laboratory in China for Geomechanics and Deep Underground Engineering (Beijing) China University of Mining and Technology School of Computer Science and Technology Shandong University of Technology
Defect distribution prediction is a meaningful topic because software defects are the fundamental cause of many attacks and data loss. Building accurate prediction models can help developers find bugs and prioritize t... 详细信息
来源: 评论
Sampling methods for efficient training of graph convolutional networks: A survey
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Xin Yan, Mingyu Deng, Lei Li, Guoqi Ye, Xiaochun Fan, Dongrui State Key Laboratory of Computer Architecture Institute of Computing Technology Chinese Academy of Sciences Beijing100086 China Department of Precision Instrument Center for Brain Inspired Computing Research Tsinghua University Beijing100084 China School of Computer Science and Technology University of Chinese Academy of Sciences
—Graph Convolutional Networks (GCNs) have received significant attention from various research fields due to the excellent performance in learning graph representations. Although GCN performs well compared with other... 详细信息
来源: 评论
SEIMI: Efficient and Secure SMAP-Enabled Intra-process Memory Isolation
SEIMI: Efficient and Secure SMAP-Enabled Intra-process Memor...
收藏 引用
IEEE Symposium on Security and Privacy
作者: Zhe Wang Chenggang Wu Mengyao Xie Yinqian Zhang Kangjie Lu Xiaofeng Zhang Yuanming Lai Yan Kang Min Yang State Key Laboratory of Computer Architecture Institute of Computing Technology Chinese Academy of Sciences The Ohio State University University of Minnesota Fudan University
Memory-corruption attacks such as code-reuse attacks and data-only attacks have been a key threat to systems security. To counter these threats, researchers have proposed a variety of defenses, including control-flow ... 详细信息
来源: 评论
Sequence Triggered Hardware Trojan in Neural Network Accelerator
Sequence Triggered Hardware Trojan in Neural Network Acceler...
收藏 引用
VLSI Test Symposium
作者: Zizhen Liu Jing Ye Xing Hu Huawei Li Xiaowei Li Yu Hu State Key Laboratory of Computer Architecture Institution of Computing Technology Chinese Academy of Sciences Department of Electrical and Computer Engineering University of California Santa Barbara
With the rapid development of deep learning techniques, the security issue for Neural Network (NN) systems has emerged as an urgent and severe problem. Hardware Trojan attack is one of the threatens, which provides at...
来源: 评论
AIBench scenario: Scenario-distilling AI benchmarking
arXiv
收藏 引用
arXiv 2020年
作者: Gao, Wanling Tang, Fei Zhan, Jianfeng Wen, Xu Wang, Lei Cao, Zheng Lan, Chuanxin Luo, Chunjie Liu, Xiaoli Jiang, Zihan State Key Laboratory of Computer Architecture Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Alibaba
Modern real-world application scenarios like Internet services consist of a diversity of AI and non-AI modules with huge code sizes and long and complicated execution paths, which raises serious benchmarking or evalua... 详细信息
来源: 评论
I/O lower bounds for auto-tuning of convolutions in CNNs
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Xiaoyang Xiao, Junmin Tan, Guangming State Key Laboratory of Computer Architecture Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Science China
Convolution is the most time-consuming part in the computation of convolutional neural networks (CNNs), which have achieved great successes in numerous practical applications. Due to the complex data dependency and th... 详细信息
来源: 评论
A systematic view of leakage risks in deep neural network systems
TechRxiv
收藏 引用
TechRxiv 2021年
作者: Hu, Xing Liang, Ling Chen, Xiaobing Deng, Lei Ji, Yu Ding, Yufei Du, Zidong Guo, Qi Sherwood, Timothy Xie, Yuan State Key Laboratory of Computer Architecture Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Department of Electrical and Computer Engineering University of California Santa Barbara United States Department of Computer Science University of California Santa Barbara United States Tsinghua University China University of California Santa Barbara United States
As deep neural networks (DNNs) continue their reach into a wide range of application domains, the neural network architecture of DNN models becomes an increasingly sensitive subject, due to either intellectual propert... 详细信息
来源: 评论
Rockburst prediction using artificial intelligence techniques:A review
岩石力学通报(英文)
收藏 引用
岩石力学通报(英文) 2024年 第3期3卷 1-13页
作者: Yu Zhang Kongyi Fang Manchao He Dongqiao Liu Junchao Wang Zhengjia Guo School of Electrical and Information Engineering Beijing University of Civil Engineering and ArchitectureBeijing100044China Beijing Key Laboratory of Intelligent Processing for Building Big Data Beijing University of Civil Engineering and ArchitectureBeijing100044China State Key Laboratory for Geomechanics and Deep Underground Engineering China University of Mining and TechnologyBeijing100083China School of Electrical and Information Engineering Beijing University of Civil Engineering and ArchitectureBeijing100044China Beijing Key Laboratory of Intelligent Processing for Building Big Data Beijing University of Civil Engineering and ArchitectureBeijing100044China State Key Laboratory for Geomechanics and Deep Underground Engineering China University of Mining and TechnologyBeijing100083China Thomas Lord Department of Computer Science University of Southern CaliforniaLos Angeles90007CAUSA
Rockburst is a phenomenon where sudden,catastrophic failure of the rock mass occurs in underground deep regions or areas with high tectonic stress during the excavation *** disasters endanger the safety of people'... 详细信息
来源: 评论