咨询与建议

限定检索结果

文献类型

  • 348 篇 期刊文献
  • 195 篇 会议
  • 1 册 图书

馆藏范围

  • 544 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 387 篇 工学
    • 269 篇 计算机科学与技术...
    • 230 篇 软件工程
    • 83 篇 信息与通信工程
    • 55 篇 生物工程
    • 40 篇 电气工程
    • 36 篇 控制科学与工程
    • 34 篇 电子科学与技术(可...
    • 33 篇 光学工程
    • 28 篇 生物医学工程(可授...
    • 25 篇 机械工程
    • 17 篇 化学工程与技术
    • 14 篇 仪器科学与技术
    • 14 篇 核科学与技术
    • 13 篇 网络空间安全
    • 12 篇 材料科学与工程(可...
    • 9 篇 动力工程及工程热...
    • 9 篇 安全科学与工程
  • 204 篇 理学
    • 86 篇 数学
    • 71 篇 物理学
    • 58 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 17 篇 化学
    • 15 篇 系统科学
  • 107 篇 管理学
    • 67 篇 管理科学与工程(可...
    • 46 篇 图书情报与档案管...
    • 28 篇 工商管理
  • 25 篇 医学
    • 20 篇 临床医学
    • 16 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 8 篇 法学
  • 5 篇 教育学
  • 3 篇 农学
  • 2 篇 军事学
  • 2 篇 艺术学
  • 1 篇 文学

主题

  • 15 篇 semantics
  • 10 篇 hadron-hadron sc...
  • 9 篇 deep learning
  • 9 篇 feature extracti...
  • 9 篇 computer vision
  • 9 篇 robustness
  • 8 篇 machine learning
  • 7 篇 object detection
  • 7 篇 optimization
  • 7 篇 students
  • 6 篇 federated learni...
  • 5 篇 interpolation
  • 5 篇 accuracy
  • 5 篇 forecasting
  • 5 篇 data models
  • 4 篇 complex networks
  • 4 篇 semantic segment...
  • 4 篇 distillation
  • 4 篇 computers
  • 4 篇 change detection

机构

  • 49 篇 hubei key labora...
  • 38 篇 national enginee...
  • 25 篇 centro brasileir...
  • 25 篇 istanbul technic...
  • 25 篇 yerevan physics ...
  • 25 篇 department of ph...
  • 24 篇 national and kap...
  • 24 篇 charles universi...
  • 23 篇 universidad iber...
  • 23 篇 brunel universit...
  • 23 篇 university of sp...
  • 23 篇 academy of scien...
  • 23 篇 indian institute...
  • 23 篇 zhejiang univers...
  • 23 篇 school of comput...
  • 22 篇 italian national...
  • 22 篇 konya technical ...
  • 22 篇 università di to...
  • 22 篇 bingol universit...
  • 22 篇 erciyes universi...

作者

  • 70 篇 du bo
  • 35 篇 tao dacheng
  • 23 篇 liu juhua
  • 21 篇 konstantinou s.
  • 20 篇 lethuillier m.
  • 20 篇 pauls a.
  • 20 篇 lehti s.
  • 20 篇 waltenberger w.
  • 20 篇 lowette s.
  • 20 篇 luukka p.
  • 18 篇 ruimin hu
  • 17 篇 tavernier s.
  • 17 篇 hu ruimin
  • 16 篇 ding liang
  • 15 篇 zhong qihuang
  • 15 篇 wang zheng
  • 14 篇 mastrolorenzo l.
  • 14 篇 bo du
  • 13 篇 chen g.m.
  • 13 篇 laktineh i.b.

语言

  • 508 篇 英文
  • 25 篇 其他
  • 11 篇 中文
检索条件"机构=State Key Laboratory Software Engineering and School Computer and Complex Network Research Center"
544 条 记 录,以下是111-120 订阅
排序:
Robust Synthetic-to-Real Transfer for Stereo Matching
Robust Synthetic-to-Real Transfer for Stereo Matching
收藏 引用
Conference on computer Vision and Pattern Recognition (CVPR)
作者: Jiawei Zhang Jiahe Li Lei Huang Xiaohan Yu Lin Gu Jin Zheng Xiao Bai State Key Laboratory of Complex & Critical Software Environment School of Computer Science and Engineering Jiangxi Research Institute Beihang University SKLCCSE Institute of Artificial Intelligence Beihang University School of Computing Macquarie University Australia RIKEN AIP The University of Tokyo
With advancements in domain generalized stereo matching networks, models pre-trained on synthetic data demonstrate strong robustness to unseen domains. However, few studies have investigated the robustness after fine-... 详细信息
来源: 评论
DRSC: Dual-Reweighted Siamese Contrastive Learning network for Cross-Domain Rotating Machinery Fault Diagnosis With Multi-Source Domain Imbalanced Data
收藏 引用
IEEE Internet of Things Journal 2025年
作者: Bi, Yuanguo Fu, Rao Jiang, Cunyu Zhang, Xiaoling Li, Fengyun Zhao, Liang Han, Guangjie Northeastern University School of Computer Science and Engineering Shenyang110169 China Ministry of Education Engineering Research Center of Security Technology of Complex Network System Shenyang110169 China Shenyang University of Technology Institute of Artificial Intelligence Shenyang110870 China Shenyang Aerospace University School of Computer Science Shenyang110135 China Hohai University Key Laboratory of Maritime Intelligent Network Information Technology Ministry of Education China
To enhance the reliability of rotating machinery, cross-domain fault diagnosis becomes vital for detecting faults under unknown operating conditions. However, multi-source domain imbalanced data present significant ch... 详细信息
来源: 评论
SAMRS: scaling-up remote sensing segmentation dataset with segment anything model  23
SAMRS: scaling-up remote sensing segmentation dataset with s...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Di Wang Jing Zhang Bo Du Minqiang Xu Lin Liu Dacheng Tao Liangpei Zhang School of Computer Science National Engineering Research Center for Multimedia Software Institute of Artificial Intelligence and Hubei Key Laboratory of Multimedia and Network Communication Engineering Wuhan University China School of Computer Science Faculty of Engineering The University of Sydney Australia National Engineering Research Center of Speech and Language Information Processing China State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing Wuhan University China
The success of the Segment Anything Model (SAM) demonstrates the significance of data-centric machine learning. However, due to the difficulties and high costs associated with annotating Remote Sensing (RS) images, a ...
来源: 评论
SAMRS: Scaling-up Remote Sensing Segmentation Dataset with Segment Anything Model
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Di Zhang, Jing Du, Bo Xu, Minqiang Liu, Lin Tao, Dacheng Zhang, Liangpei School of Computer Science National Engineering Research Center for Multimedia Software Institute of Artificial Intelligence Hubei Key Laboratory of Multimedia and Network Communication Engineering Wuhan University China School of Computer Science Faculty of Engineering The University of Sydney Australia National Engineering Research Center of Speech and Language Information Processing China State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing Wuhan University China
The success of the Segment Anything Model (SAM) demonstrates the significance of data-centric machine learning. However, due to the difficulties and high costs associated with annotating Remote Sensing (RS) images, a ... 详细信息
来源: 评论
DeepCL: Deep Change Feature Learning on Remote Sensing Images in the Metric Space
arXiv
收藏 引用
arXiv 2023年
作者: Guo, Haonan Du, Bo Wu, Chen Han, Chengxi Zhang, Liangpei The State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing Wuhan University Wuhan China The National Engineering Research Center for Multimedia Software Institute of Artificial Intelligence School of Computer Science Hubei Key Laboratory of Multimedia and Network Communication Engineering Wuhan University Wuhan China
Change detection (CD) is an important yet challenging task in the Earth observation field for monitoring Earth surface dynamics. The advent of deep learning techniques has recently propelled automatic CD into a techno... 详细信息
来源: 评论
Rethinking Federated Learning with Domain Shift: A Prototype View
Rethinking Federated Learning with Domain Shift: A Prototype...
收藏 引用
Conference on computer Vision and Pattern Recognition (CVPR)
作者: Wenke Huang Mang Ye Zekun Shi He Li Bo Du National Engineering Research Center for Multimedia Software Institute of Artificial Intelligence Hubei Key Laboratory of Multimedia and Network Communication Engineering School of Computer Science Wuhan University Wuhan China Hubei Luojia Laboratory Wuhan China
Federated learning shows a bright promise as a privacy-preserving collaborative learning technique. However, prevalent solutions mainly focus on all private data sampled from the same domain. An important challenge is...
来源: 评论
Freevc: Towards High-Quality Text-Free One-Shot Voice Conversion
Freevc: Towards High-Quality Text-Free One-Shot Voice Conver...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Jingyi Li Weiping Tu Li Xiao National Engineering Research Center for Multimedia Software School of Computer Science Wuhan University Wuhan China Hubei Key Laboratory of Multimedia and Network Communication Engineering Wuhan University Wuhan China Hubei Luojia Laboratory China
Voice conversion (VC) can be achieved by first extracting source content information and target speaker information, and then reconstructing waveform with these information. However, current approaches normally either... 详细信息
来源: 评论
Unsupervised Visible-Infrared Person Re-Identification via Progressive Graph Matching and Alternate Learning
Unsupervised Visible-Infrared Person Re-Identification via P...
收藏 引用
Conference on computer Vision and Pattern Recognition (CVPR)
作者: Zesen Wu Mang Ye Hubei Key Laboratory of Multimedia and Network Communication Engineering National Engineering Research Center for Multimedia Software Institute of Artificial Intelligence School of Computer Science Wuhan University Wuhan China Hubei Luojia Laboratory Wuhan China
Unsupervised visible-infrared person re-identification is a challenging task due to the large modality gap and the unavailability of cross-modality correspondences. Cross-modality correspondences are very crucial to b...
来源: 评论
Towards Modality-Agnostic Person Re-identification with Descriptive Query
Towards Modality-Agnostic Person Re-identification with Desc...
收藏 引用
Conference on computer Vision and Pattern Recognition (CVPR)
作者: Cuiqun Chen Mang Ye Ding Jiang National Engineering Research Center for Multimedia Software Hubei Key Laboratory of Multimedia and Network Communication Engineering Institute of Artificial Intelligence School of Computer Science Wuhan University Wuhan China Hubei Luojia Laboratory Wuhan China
Person re-identification (ReID) with descriptive query (text or sketch) provides an important supplement for general image-image paradigms, which is usually studied in a single cross-modality matching manner, e.g., te...
来源: 评论
Contextual Graph Reconstruction and Emotional Variation Learning for Conversational Emotion Recognition
收藏 引用
IEEE Transactions on Affective Computing 2025年
作者: Rao, Yujing Cao, Min Ye, Mang Wuhan University National Engineering Research Center for Multimedia Software Institute of Artificial Intelligence Hubei Key Laboratory of Multimedia and Network Communication Engineering School of Computer Science Wuhan430072 China Soochow University School of Computer Science and Technology Suzhou215006 China
Conversational Emotion Recognition (CER) significantly benefits from the integration of multiple modalities. However, real-world scenarios are often plagued by hardware malfunctions and network failures that lead to m... 详细信息
来源: 评论