咨询与建议

限定检索结果

文献类型

  • 352 篇 期刊文献
  • 200 篇 会议
  • 1 册 图书

馆藏范围

  • 553 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 388 篇 工学
    • 269 篇 计算机科学与技术...
    • 230 篇 软件工程
    • 83 篇 信息与通信工程
    • 55 篇 生物工程
    • 42 篇 电气工程
    • 36 篇 控制科学与工程
    • 34 篇 电子科学与技术(可...
    • 33 篇 光学工程
    • 28 篇 生物医学工程(可授...
    • 25 篇 机械工程
    • 17 篇 化学工程与技术
    • 14 篇 仪器科学与技术
    • 14 篇 核科学与技术
    • 13 篇 网络空间安全
    • 12 篇 材料科学与工程(可...
    • 9 篇 动力工程及工程热...
    • 9 篇 安全科学与工程
  • 204 篇 理学
    • 86 篇 数学
    • 71 篇 物理学
    • 58 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 17 篇 化学
    • 15 篇 系统科学
  • 107 篇 管理学
    • 67 篇 管理科学与工程(可...
    • 46 篇 图书情报与档案管...
    • 28 篇 工商管理
  • 25 篇 医学
    • 20 篇 临床医学
    • 16 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 8 篇 法学
  • 5 篇 教育学
  • 3 篇 农学
  • 2 篇 军事学
  • 2 篇 艺术学
  • 1 篇 文学

主题

  • 15 篇 semantics
  • 10 篇 hadron-hadron sc...
  • 9 篇 deep learning
  • 9 篇 feature extracti...
  • 9 篇 computer vision
  • 9 篇 robustness
  • 8 篇 machine learning
  • 7 篇 object detection
  • 7 篇 optimization
  • 7 篇 students
  • 6 篇 federated learni...
  • 5 篇 interpolation
  • 5 篇 accuracy
  • 5 篇 forecasting
  • 5 篇 data models
  • 4 篇 complex networks
  • 4 篇 semantic segment...
  • 4 篇 distillation
  • 4 篇 computers
  • 4 篇 change detection

机构

  • 49 篇 hubei key labora...
  • 39 篇 national enginee...
  • 25 篇 centro brasileir...
  • 25 篇 istanbul technic...
  • 25 篇 yerevan physics ...
  • 25 篇 department of ph...
  • 24 篇 national and kap...
  • 24 篇 charles universi...
  • 23 篇 universidad iber...
  • 23 篇 brunel universit...
  • 23 篇 university of sp...
  • 23 篇 academy of scien...
  • 23 篇 indian institute...
  • 23 篇 zhejiang univers...
  • 23 篇 school of comput...
  • 22 篇 italian national...
  • 22 篇 konya technical ...
  • 22 篇 università di to...
  • 22 篇 bingol universit...
  • 22 篇 erciyes universi...

作者

  • 70 篇 du bo
  • 35 篇 tao dacheng
  • 23 篇 liu juhua
  • 21 篇 konstantinou s.
  • 20 篇 lethuillier m.
  • 20 篇 pauls a.
  • 20 篇 lehti s.
  • 20 篇 waltenberger w.
  • 20 篇 lowette s.
  • 20 篇 luukka p.
  • 18 篇 ruimin hu
  • 17 篇 tavernier s.
  • 17 篇 hu ruimin
  • 16 篇 ding liang
  • 15 篇 zhong qihuang
  • 15 篇 wang zheng
  • 14 篇 mastrolorenzo l.
  • 14 篇 bo du
  • 13 篇 chen g.m.
  • 13 篇 laktineh i.b.

语言

  • 517 篇 英文
  • 25 篇 其他
  • 11 篇 中文
检索条件"机构=State Key Laboratory Software Engineering and School Computer and Complex Network Research Center"
553 条 记 录,以下是111-120 订阅
排序:
Perceptual Audio Object Coding Using Adaptive Subband Grouping with CNN and Residual Block
Perceptual Audio Object Coding Using Adaptive Subband Groupi...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Yulin Wu Ruimin Hu Xiaochen Wang National Engineering Research Center for Multimedia Software School of Computer Science Wuhan University Wuhan China Hubei Key Laboratory of Multimedia and Network Communication Engineering Wuhan University Wuhan China
Spatial audio content is becoming increasingly popular and is regarded as a set of object signals with associated metadata. The object-based content representation is independent of loudspeaker layouts and provides hi...
来源: 评论
FedSSP: Federated Graph Learning with Spectral Knowledge and Personalized Preference
arXiv
收藏 引用
arXiv 2024年
作者: Tan, Zihan Wan, Guancheng Huang, Wenke Ye, Mang National Engineering Research Center for Multimedia Software Institute of Artificial Intelligence Hubei Key Laboratory of Multimedia and Network Communication Engineering School of Computer Science Wuhan University Wuhan China Taikang Center for Life and Medical Sciences Wuhan University Wuhan China
Personalized Federated Graph Learning (pFGL) facilitates the decentralized training of Graph Neural networks (GNNs) without compromising privacy while accommodating personalized requirements for non-IID participants. ... 详细信息
来源: 评论
Good is Bad: Causality Inspired Cloth-debiasing for Cloth-changing Person Re-identification
Good is Bad: Causality Inspired Cloth-debiasing for Cloth-ch...
收藏 引用
Conference on computer Vision and Pattern Recognition (CVPR)
作者: Zhengwei Yang Meng Lin Xian Zhong Yu Wu Zheng Wang National Engineering Research Center for Multimedia Software Institute of Artificial Intelligence School of Computer Science Wuhan University Hubei Key Laboratory of Multimedia and Network Communication Engineering School of Computer Science and Artificial Intelligence Wuhan University of Technology
Entangled representation of clothing and identity (ID)-intrinsic clues are potentially concomitant in conventional person Re- IDentification (ReID). Nevertheless, eliminating the negative impact of clothing on ID rema...
来源: 评论
Unlabeled Imperfect Demonstrations in Adversarial Imitation Learning
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Yunke Du, Bo Xu, Chang School of Computer Science National Engineering Research Center for Multimedia Software Institute of Artificial Intelligence Hubei Key Laboratory of Multimedia and Network Communication Engineering Wuhan University Wuhan China School of Computer Science Faculty of Engineering The University of Sydney Australia
Adversarial imitation learning has become a widely used imitation learning framework. The discriminator is often trained by taking expert demonstrations and policy trajectories as examples respectively from two catego... 详细信息
来源: 评论
Better Diffusion Models Further Improve Adversarial Training
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Zekai Pang, Tianyu Du, Chao Lin, Min Liu, Weiwei Yan, Shuicheng School of Computer Science National Engineering Research Center for Multimedia Software Institute of Artificial Intelligence Hubei Key Laboratory of Multimedia and Network Communication Engineering Wuhan University China Sea AI Lab
It has been recognized that the data generated by the denoising diffusion probabilistic model (DDPM) improves adversarial training. After two years of rapid development in diffusion models, a question naturally arises... 详细信息
来源: 评论
Anomize: Better Open Vocabulary Video Anomaly Detection
arXiv
收藏 引用
arXiv 2025年
作者: Li, Fei Liu, Wenxuan Chen, Jingjing Zhang, Ruixu Wang, Yuran Zhong, Xian Wang, Zheng National Engineering Research Center for Multimedia Software School of Computer Science Wuhan University China Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University China State Key Laboratory for Multimedia Information Processing School of Computer Science Peking University China Hubei Key Laboratory of Transportation Internet of Things Wuhan University of Technology China
Open Vocabulary Video Anomaly Detection (OVVAD) seeks to detect and classify both base and novel anomalies. However, existing methods face two specific challenges related to novel anomalies. The first challenge is det...
来源: 评论
Robust Synthetic-to-Real Transfer for Stereo Matching
Robust Synthetic-to-Real Transfer for Stereo Matching
收藏 引用
Conference on computer Vision and Pattern Recognition (CVPR)
作者: Jiawei Zhang Jiahe Li Lei Huang Xiaohan Yu Lin Gu Jin Zheng Xiao Bai State Key Laboratory of Complex & Critical Software Environment School of Computer Science and Engineering Jiangxi Research Institute Beihang University SKLCCSE Institute of Artificial Intelligence Beihang University School of Computing Macquarie University Australia RIKEN AIP The University of Tokyo
With advancements in domain generalized stereo matching networks, models pre-trained on synthetic data demonstrate strong robustness to unseen domains. However, few studies have investigated the robustness after fine-... 详细信息
来源: 评论
DRSC: Dual-Reweighted Siamese Contrastive Learning network for Cross-Domain Rotating Machinery Fault Diagnosis With Multi-Source Domain Imbalanced Data
收藏 引用
IEEE Internet of Things Journal 2025年
作者: Bi, Yuanguo Fu, Rao Jiang, Cunyu Zhang, Xiaoling Li, Fengyun Zhao, Liang Han, Guangjie Northeastern University School of Computer Science and Engineering Shenyang110169 China Ministry of Education Engineering Research Center of Security Technology of Complex Network System Shenyang110169 China Shenyang University of Technology Institute of Artificial Intelligence Shenyang110870 China Shenyang Aerospace University School of Computer Science Shenyang110135 China Hohai University Key Laboratory of Maritime Intelligent Network Information Technology Ministry of Education China
To enhance the reliability of rotating machinery, cross-domain fault diagnosis becomes vital for detecting faults under unknown operating conditions. However, multi-source domain imbalanced data present significant ch... 详细信息
来源: 评论
SAMRS: scaling-up remote sensing segmentation dataset with segment anything model  23
SAMRS: scaling-up remote sensing segmentation dataset with s...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Di Wang Jing Zhang Bo Du Minqiang Xu Lin Liu Dacheng Tao Liangpei Zhang School of Computer Science National Engineering Research Center for Multimedia Software Institute of Artificial Intelligence and Hubei Key Laboratory of Multimedia and Network Communication Engineering Wuhan University China School of Computer Science Faculty of Engineering The University of Sydney Australia National Engineering Research Center of Speech and Language Information Processing China State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing Wuhan University China
The success of the Segment Anything Model (SAM) demonstrates the significance of data-centric machine learning. However, due to the difficulties and high costs associated with annotating Remote Sensing (RS) images, a ...
来源: 评论
SAMRS: Scaling-up Remote Sensing Segmentation Dataset with Segment Anything Model
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Di Zhang, Jing Du, Bo Xu, Minqiang Liu, Lin Tao, Dacheng Zhang, Liangpei School of Computer Science National Engineering Research Center for Multimedia Software Institute of Artificial Intelligence Hubei Key Laboratory of Multimedia and Network Communication Engineering Wuhan University China School of Computer Science Faculty of Engineering The University of Sydney Australia National Engineering Research Center of Speech and Language Information Processing China State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing Wuhan University China
The success of the Segment Anything Model (SAM) demonstrates the significance of data-centric machine learning. However, due to the difficulties and high costs associated with annotating Remote Sensing (RS) images, a ... 详细信息
来源: 评论