咨询与建议

限定检索结果

文献类型

  • 354 篇 期刊文献
  • 195 篇 会议
  • 1 册 图书

馆藏范围

  • 550 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 391 篇 工学
    • 273 篇 计算机科学与技术...
    • 234 篇 软件工程
    • 85 篇 信息与通信工程
    • 55 篇 生物工程
    • 44 篇 电气工程
    • 40 篇 控制科学与工程
    • 36 篇 电子科学与技术(可...
    • 33 篇 光学工程
    • 28 篇 生物医学工程(可授...
    • 25 篇 机械工程
    • 17 篇 化学工程与技术
    • 16 篇 网络空间安全
    • 14 篇 仪器科学与技术
    • 14 篇 核科学与技术
    • 12 篇 材料科学与工程(可...
    • 9 篇 动力工程及工程热...
    • 9 篇 安全科学与工程
  • 203 篇 理学
    • 84 篇 数学
    • 72 篇 物理学
    • 58 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 17 篇 化学
    • 15 篇 系统科学
  • 107 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 47 篇 图书情报与档案管...
    • 27 篇 工商管理
  • 25 篇 医学
    • 20 篇 临床医学
    • 16 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 8 篇 法学
  • 6 篇 教育学
  • 3 篇 农学
  • 2 篇 军事学
  • 2 篇 艺术学
  • 1 篇 文学

主题

  • 15 篇 semantics
  • 12 篇 hadron-hadron sc...
  • 9 篇 deep learning
  • 9 篇 feature extracti...
  • 9 篇 computer vision
  • 9 篇 robustness
  • 8 篇 machine learning
  • 7 篇 object detection
  • 7 篇 optimization
  • 7 篇 students
  • 6 篇 federated learni...
  • 5 篇 interpolation
  • 5 篇 accuracy
  • 5 篇 forecasting
  • 5 篇 data models
  • 4 篇 complex networks
  • 4 篇 semantic segment...
  • 4 篇 top physics
  • 4 篇 distillation
  • 4 篇 higgs physics

机构

  • 49 篇 hubei key labora...
  • 36 篇 national enginee...
  • 27 篇 centro brasileir...
  • 27 篇 istanbul technic...
  • 27 篇 yerevan physics ...
  • 27 篇 department of ph...
  • 26 篇 national and kap...
  • 26 篇 charles universi...
  • 25 篇 universidad iber...
  • 25 篇 brunel universit...
  • 25 篇 university of sp...
  • 25 篇 academy of scien...
  • 25 篇 indian institute...
  • 25 篇 zhejiang univers...
  • 24 篇 italian national...
  • 24 篇 konya technical ...
  • 24 篇 università di to...
  • 24 篇 bingol universit...
  • 24 篇 erciyes universi...
  • 24 篇 imperial college...

作者

  • 70 篇 du bo
  • 35 篇 tao dacheng
  • 23 篇 konstantinou s.
  • 23 篇 liu juhua
  • 22 篇 lethuillier m.
  • 22 篇 pauls a.
  • 22 篇 lehti s.
  • 22 篇 waltenberger w.
  • 22 篇 lowette s.
  • 22 篇 luukka p.
  • 19 篇 tavernier s.
  • 18 篇 ruimin hu
  • 16 篇 mastrolorenzo l.
  • 16 篇 ding liang
  • 16 篇 hu ruimin
  • 15 篇 zhong qihuang
  • 15 篇 wang zheng
  • 14 篇 bo du
  • 13 篇 chen g.m.
  • 13 篇 laktineh i.b.

语言

  • 516 篇 英文
  • 23 篇 其他
  • 11 篇 中文
检索条件"机构=State Key Laboratory Software Engineering and School Computer and Complex Network Research Center"
550 条 记 录,以下是111-120 订阅
排序:
A Novel Method for Precipitation Nowcasting Based on ST-LSTM
收藏 引用
computers, Materials & Continua 2022年 第9期72卷 4867-4877页
作者: Wei Fang Liang Shen Victor S.Sheng Qiongying Xue School of Computer&Software Engineering Research Center of Digital ForensicsMinistry of EducationNanjing University of Information Science&TechnologyNanjing210044China State Key Laboratory of Severe Weather Chinese Academy of Meteorological SciencesBeijing100081China Department of Computer Texas Tech UniversityLubbockTX79409USA
Precipitation nowcasting is of great significance for severe convective weather *** echo extrapolation is a commonly used precipitation nowcasting ***,the traditional radar echo extrapolation methods are encountered w... 详细信息
来源: 评论
A Theory of Transfer-Based Black-Box Attacks: Explanation and Implications  37
A Theory of Transfer-Based Black-Box Attacks: Explanation an...
收藏 引用
37th Conference on Neural Information Processing Systems, NeurIPS 2023
作者: Chen, Yanbo Liu, Weiwei School of Computer Science Wuhan University National Engineering Research Center for Multimedia Software Wuhan University Institute of Artificial Intelligence Wuhan University Hubei Key Laboratory of Multimedia and Network Communication Engineering Wuhan University
Transfer-based attacks [1] are a practical method of black-box adversarial attacks in which the attacker aims to craft adversarial examples from a source model that is transferable to the target model. Many empirical ...
来源: 评论
AUTOMATICALLY ADJUSTABLE MULTI-SCALE FEATURE EXTRACTION FRAMEWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
AUTOMATICALLY ADJUSTABLE MULTI-SCALE FEATURE EXTRACTION FRAM...
收藏 引用
2021 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021
作者: Yang, Jiaqi Du, Bo Wu, Chen Zhang, Liangpei State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing Wuhan University Wuhan430079 China National Engineering Research Center for Multimedia Software Institute of Artificial Intelligence School of Computer Science Hubei Key Laboratory of Multimedia and Network Communication Engineering Wuhan University Wuhan430072 China
Recently, deep learning-based methods have shown the great potential in hyperspectral image (HSI) classification. Nevertheless, feature extraction by convolutional neural network (CNN) is often performed on only one s... 详细信息
来源: 评论
The Reliability of OKRidge Method in Solving Sparse Ridge Regression Problems  38
The Reliability of OKRidge Method in Solving Sparse Ridge Re...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Li, Xiyuan Wang, Youjun Liu, Weiwei School of Computer Science Wuhan University National Engineering Research Center for Multimedia Software Wuhan University Institute of Artificial Intelligence Wuhan University Hubei Key Laboratory of Multimedia and Network Communication Engineering Wuhan University
Sparse ridge regression problems play a significant role across various domains. To solve sparse ridge regression, [1] recently proposes an advanced algorithm, Scalable Optimal K-Sparse Ridge Regression (OKRidge), whi...
来源: 评论
A Boosting-Type Convergence Result for *** with Factorized Multi-Class Classifiers  38
A Boosting-Type Convergence Result for *** with Factorized M...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Zou, Xin Zhou, Zhengyu Xu, Jingyuan Liu, Weiwei School of Computer Science Wuhan University National Engineering Research Center for Multimedia Software Wuhan University Institute of Artificial Intelligence Wuhan University Hubei Key Laboratory of Multimedia and Network Communication Engineering Wuhan University
ADABOOST is a well-known algorithm in boosting. Schapire and Singer propose, an extension of ADABOOST, named ***, for multi-class classification problems. Kégl shows empirically that *** works better when the cla...
来源: 评论
Adversarial Self-Training Improves Robustness and Generalization for Gradual Domain Adaptation  37
Adversarial Self-Training Improves Robustness and Generaliza...
收藏 引用
37th Conference on Neural Information Processing Systems, NeurIPS 2023
作者: Shi, Lianghe Liu, Weiwei School of Computer Science Wuhan University National Engineering Research Center for Multimedia Software Wuhan University Institute of Artificial Intelligence Wuhan University Hubei Key Laboratory of Multimedia and Network Communication Engineering Wuhan University
Gradual Domain Adaptation (GDA), in which the learner is provided with additional intermediate domains, has been theoretically and empirically studied in many contexts. Despite its vital role in security-critical scen...
来源: 评论
Relaying Strategy Based on Estimated Information for Multi-Antenna Cooperative networks
收藏 引用
China Communications 2017年 第8期14卷 157-165页
作者: Shuangshuang Han Peng Zhang Feijin Shi Fei-Yue Wang The State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of SciencesBeijingChina and Qingdao Academy of Intelligent Industries School of Computer Engineering Weifang University Communications Headquarters Ministry of Foreign Affairs of the People's Republic of China State Key Laboratory of Management and Control for Complex Systems Institute of AutomationChinese Academy of SciencesBeijingChina and Research Center of Computational Experiments and Parallel SystemsThe National University of Defense Technology
A sphere-based list forwarding scheme for multiple-input multiple-output(MIMO) relay networks is proposed and analyzed. Firstly, an estimate forwarding(EF) method is proposed, which forwards the minimum mean squared e... 详细信息
来源: 评论
DeePMD-kit v3: A Multiple-Backend Framework for Machine Learning Potentials
arXiv
收藏 引用
arXiv 2025年
作者: Zeng, Jinzhe Zhang, Duo Peng, Anyang Zhang, Xiangyu He, Sensen Wang, Yan Liu, Xinzijian Bi, Hangrui Li, Yifan Cai, Chun Zhang, Chengqian Du, Yiming Zhu, Jia-Xin Mo, Pinghui Huang, Zhengtao Zeng, Qiyu Shi, Shaochen Qin, Xuejian Yu, Zhaoxi Luo, Chenxing Ding, Ye Liu, Yun-Pei Shi, Ruosong Wang, Zhenyu Bore, Sigbjørn Løland Chang, Junhan Deng, Zhe Ding, Zhaohan Han, Siyuan Jiang, Wanrun Ke, Guolin Liu, Zhaoqing Lu, Denghui Muraoka, Koki Oliaei, Hananeh Singh, Anurag Kumar Que, Haohui Xu, Weihong Xu, Zhangmancang Zhuang, Yong-Bin Dai, Jiayu Giese, Timothy J. Jia, Weile Xu, Ben York, Darrin M. Zhang, Linfeng Wang, Han School of Artificial Intelligence and Data Science Unversity of Science and Technology of China Hefei China AI for Science Institute Beijing100080 China DP Technology Beijing100080 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences Beijing100871 China University of Chinese Academy of Sciences Beijing China Baidu Inc. Beijing China Department of Computer Science University of Toronto TorontoON Canada Department of Chemistry Princeton University PrincetonNJ08540 United States University of Chinese Academy of Sciences Beijing100871 China State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen361005 China College of Integrated Circuits Hunan University Changsha410082 China State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Center for Smart Materials and Device Integration School of Material Science and Engineering Wuhan University of Technology Wuhan430070 China College of Science National University of Defense Technology Changsha410073 China Hunan Key Laboratory of Extreme Matter and Applications National University of Defense Technology Changsha410073 China ByteDance Research Beijing100098 China Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo315201 China College of Materials Science and Opto-Electronic Technology University of Chinese Academy of Sciences Beijing100049 China Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education College of Chemistry Beijing Normal University Beijing100875 China Department of Geosciences Princeton University PrincetonNJ08544 United States Department of Applied Physics and Applied Mathematics Columbia University New YorkNY10027 United States IKKEM Fujian Xiamen361005 China Graduate
In recent years, machine learning potentials (MLPs) have become indispensable tools in physics, chemistry, and materials science, driving the development of software packages for molecular dynamics (MD) simulations an... 详细信息
来源: 评论
An Approach to Locating Delayed Activities in software Processes
收藏 引用
International Journal of Automation and computing 2018年 第1期15卷 115-124页
作者: Yun-Zhi Jin Hua Zhou Hong-Ji Yang Si-Jing Zhang Ji-Dong Ge School of Software Yunnan University Kunming 650091 China Key Laboratory for Software Engineering of Yunnan Province Kunming 650000 China Research Center of Cloud Computing of Yunnan Province Kunming 650000 China Centre for Creative Computing Bath Spa University Corsham SN13 0BZ UK Department of Computer Science and Technology University of Bedfordshire LU13JU UK State Key Laboratory for Novel Software Technology Software Institute Nanjing University Nanjing 210093 China
Activity is now playing a vital role in software processes. To ensure the high-level efficiency of software processes, a key point is to locate those activities that own bigger resource occupation probabilities with r... 详细信息
来源: 评论
Parallel Planning:A New Motion Planning Framework for Autonomous Driving
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2019年 第1期6卷 236-246页
作者: Long Chen Xuemin Hu Wei Tian Hong Wang Dongpu Cao Fei-Yue Wang IEEE School of Data and Computer Science Sun Yat-sen University the School of Computer Science and Information Engineering Hubei University Institute of Measurement and Control Systems Karlsruhe Institute of Technology Department of Mechanical and Mechatronics Engineering University of Waterloo the State Key Laboratory of Management and Control for Complex Systems.Institute of Automation Chinese Academy of Sciences the Research Center for Military Computational Experiments and Parallel Systems Technology National University of Defense Technology
Motion planning is one of the most significant technologies for autonomous driving. To make motion planning models able to learn from the environment and to deal with emergency situations, a new motion planning framew... 详细信息
来源: 评论