咨询与建议

限定检索结果

文献类型

  • 348 篇 期刊文献
  • 195 篇 会议
  • 1 册 图书

馆藏范围

  • 544 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 387 篇 工学
    • 269 篇 计算机科学与技术...
    • 230 篇 软件工程
    • 83 篇 信息与通信工程
    • 55 篇 生物工程
    • 40 篇 电气工程
    • 36 篇 控制科学与工程
    • 34 篇 电子科学与技术(可...
    • 33 篇 光学工程
    • 28 篇 生物医学工程(可授...
    • 25 篇 机械工程
    • 17 篇 化学工程与技术
    • 14 篇 仪器科学与技术
    • 14 篇 核科学与技术
    • 13 篇 网络空间安全
    • 12 篇 材料科学与工程(可...
    • 9 篇 动力工程及工程热...
    • 9 篇 安全科学与工程
  • 204 篇 理学
    • 86 篇 数学
    • 71 篇 物理学
    • 58 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 17 篇 化学
    • 15 篇 系统科学
  • 107 篇 管理学
    • 67 篇 管理科学与工程(可...
    • 46 篇 图书情报与档案管...
    • 28 篇 工商管理
  • 25 篇 医学
    • 20 篇 临床医学
    • 16 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 8 篇 法学
  • 5 篇 教育学
  • 3 篇 农学
  • 2 篇 军事学
  • 2 篇 艺术学
  • 1 篇 文学

主题

  • 15 篇 semantics
  • 10 篇 hadron-hadron sc...
  • 9 篇 deep learning
  • 9 篇 feature extracti...
  • 9 篇 computer vision
  • 9 篇 robustness
  • 8 篇 machine learning
  • 7 篇 object detection
  • 7 篇 optimization
  • 7 篇 students
  • 6 篇 federated learni...
  • 5 篇 interpolation
  • 5 篇 accuracy
  • 5 篇 forecasting
  • 5 篇 data models
  • 4 篇 complex networks
  • 4 篇 semantic segment...
  • 4 篇 distillation
  • 4 篇 computers
  • 4 篇 change detection

机构

  • 49 篇 hubei key labora...
  • 38 篇 national enginee...
  • 25 篇 centro brasileir...
  • 25 篇 istanbul technic...
  • 25 篇 yerevan physics ...
  • 25 篇 department of ph...
  • 24 篇 national and kap...
  • 24 篇 charles universi...
  • 23 篇 universidad iber...
  • 23 篇 brunel universit...
  • 23 篇 university of sp...
  • 23 篇 academy of scien...
  • 23 篇 indian institute...
  • 23 篇 zhejiang univers...
  • 23 篇 school of comput...
  • 22 篇 italian national...
  • 22 篇 konya technical ...
  • 22 篇 università di to...
  • 22 篇 bingol universit...
  • 22 篇 erciyes universi...

作者

  • 70 篇 du bo
  • 35 篇 tao dacheng
  • 23 篇 liu juhua
  • 21 篇 konstantinou s.
  • 20 篇 lethuillier m.
  • 20 篇 pauls a.
  • 20 篇 lehti s.
  • 20 篇 waltenberger w.
  • 20 篇 lowette s.
  • 20 篇 luukka p.
  • 18 篇 ruimin hu
  • 17 篇 tavernier s.
  • 17 篇 hu ruimin
  • 16 篇 ding liang
  • 15 篇 zhong qihuang
  • 15 篇 wang zheng
  • 14 篇 mastrolorenzo l.
  • 14 篇 bo du
  • 13 篇 chen g.m.
  • 13 篇 laktineh i.b.

语言

  • 508 篇 英文
  • 25 篇 其他
  • 11 篇 中文
检索条件"机构=State Key Laboratory Software Engineering and School Computer and Complex Network Research Center"
544 条 记 录,以下是201-210 订阅
排序:
Learning transformer-based heterogeneously salient graph representation for multimodal remote sensing image classification
arXiv
收藏 引用
arXiv 2023年
作者: Yang, Jiaqi Du, Bo Zhang, Liangpei State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing Wuhan University Wuhan430079 China National Engineering Research Center for Multimedia Software Wuhan University Wuhan China Institute of Artificial Intelligence Wuhan University Wuhan China School of Computer Science Wuhan University Wuhan China Hubei Key Laboratory of Multimedia and Network Communication Engineering Wuhan University Wuhan China
Data collected by different modalities can provide a wealth of complementary information, such as hyperspectral image (HSI) to offer rich spectral-spatial properties, synthetic aperture radar (SAR) to provide structur... 详细信息
来源: 评论
Active Power Control for Off-Shore Wind Turbines Against FDI Attack
Active Power Control for Off-Shore Wind Turbines Against FDI...
收藏 引用
IEEE International Conference on Communications in China Workshops (ICCC)
作者: Xuguo Jiao Hao Luo Liuyang Jiang Lin Wang Xin Wang Zuqiang Huang State Key Laboratory of Industrial Control Technology College of Control Science and Engineering Zhejiang University Hangzhou China School of Information and Control Engineering Qingdao University of Technology Qingdao China Zhejiang Windey Co. Ltd. Hangzhou China Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center Shandong Academy of Sciences Qilu University of Technology Jinan China Shandong Provincial Key Laboratory of Computer Networks Shandong Fundamental Research Center for Computer Science Jinan China School of Civil Engineering Zhengzhou University Zhengzhou China
Recently, offshore wind power has rapidly developed due to its low environmental interference and abundant wind resources. However, due to its remote geographical location and high demand for communication infrastruct... 详细信息
来源: 评论
VF-PS: how to select important participants in vertical federated learning, efficiently and securely?  22
VF-PS: how to select important participants in vertical fede...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Jiawei Jiang Lukas Burkhalter Fangcheng Fu Bolin Ding Bo Du Anwar Hithnawi Bo Li Ce Zhang School of Computer Science Institute of Artificial Intelligence Hubei Key Laboratory of Multimedia and Network Communication Engineering National Engineering Research Center for Multimedia Software Wuhan University and ETH Zürich and OceanBase Ant Group ETH Zürich Peking University Alibaba Group School of Computer Science Institute of Artificial Intelligence Hubei Key Laboratory of Multimedia and Network Communication Engineering National Engineering Research Center for Multimedia Software Wuhan University University of Illinois at Urbana-Champaign
Vertical Federated Learning (VFL), that trains federated models over vertically partitioned data, has emerged as an important learning paradigm. However, existing VFL methods are facing two challenges: (1) scalability...
来源: 评论
FREEVC: TOWARDS HIGH-QUALITY TEXT-FREE ONE-SHOT VOICE CONVERSION
arXiv
收藏 引用
arXiv 2022年
作者: Li, Jingyi Tu, Weiping Xiao, Li National Engineering Research Center for Multimedia Software School of Computer Science Wuhan University Wuhan430072 China Hubei Key Laboratory of Multimedia and Network Communication Engineering Wuhan University Wuhan430072 China
Voice conversion (VC) can be achieved by first extracting source content information and target speaker information, and then reconstructing waveform with these information. However, current approaches normally either... 详细信息
来源: 评论
Fully Convolutional Change Detection Framework with Generative Adversarial network for Unsupervised, Weakly Supervised and Regional Supervised Change Detection
arXiv
收藏 引用
arXiv 2022年
作者: Wu, Chen Du, Bo Zhang, Liangpei The State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing Wuhan University Wuhan430072 China National Engineering Research Center for Multimedia Software Institute of Artificial Intelligence School of Computer Science Hubei Key Laboratory of Multimedia and Network Communication Engineering Wuhan University Wuhan China
Deep learning for change detection is one of the current hot topics in the field of remote sensing. However, most end-to-end networks are proposed for supervised change detection, and unsupervised change detection mod... 详细信息
来源: 评论
Hidden Follower Detection via Refined Gaze and Walking state Estimation
Hidden Follower Detection via Refined Gaze and Walking State...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Yaxi Chen Ruimin Hu Danni Xu Zheng Wang Linbo Luo Dengshi Li National Engineering Research Center for Multimedia Software School of Computer Science Wuhan University Wuhan China Hubei Key Laboratory of Multimedia and Network Communication Engineering Wuhan University Wuhan China School of Computing the National University of Singapore Singapore School of Cyber Engineering Xidian University Xi’an China School of Artificial Intelligence Jianghan University Wuhan China
Hidden following is following behavior with special intentions, and detecting hidden following behavior can prevent many criminal activities in advance. The previous method uses gaze and spacing behaviors to distingui...
来源: 评论
FedCache 2.0: Federated Edge Learning with Knowledge Caching and Dataset Distillation
arXiv
收藏 引用
arXiv 2024年
作者: Pan, Quyang Sun, Sheng Wu, Zhiyuan Wang, Yuwei Liu, Min Gao, Bo Wang, Jingyuan The State Key Laboratory of Processors Institute of Computing Technology Chinese Academy of Sciences Beijing China The University of Chinese Academy of Sciences Beijing China The Zhongguancun Laboratory Beijing China The School of Computer and Information Technology The Engineering Research Center of Network Management Technology for High-Speed Railway Ministry of Education Beijing Jiaotong University Beijing China The School of Computer Science and Engineering Beihang Unversity Beijing China
Federated Edge Learning (FEL) has emerged as a promising approach for enabling edge devices to collaboratively train machine learning models while preserving data privacy. Despite its advantages, practical FEL deploym... 详细信息
来源: 评论
Auction Theory and Game Theory Based Pricing of Edge Computing Resources: A Survey
收藏 引用
IEEE Internet of Things Journal 2025年
作者: Yu, Jiguo Liu, Shun Zou, Yifei Wang, Guijuan Hu, Chunqiang University of Electronic Science and Technology of China School of Information and Software Engineering Chengdu610054 China Qilu University of Technology Big Data Institute Jinan250353 China Qufu Normal University School of Computer Science Shandong Rizhao China Shandong University School of Computer Science and Technology Shandong Qingdao266237 China Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center Jinan250353 China Shandong Fundamental Research Center for Computer Science Shandong Provincial Key Laboratory of Computer Networks Jinan250353 China Chongqing University School of Big Data and Software Engineering Chongqing400044 China
The proliferation of Internet of Things (IoT) devices and edge computing applications has heightened the demand for efficient resource allocation and pricing mechanisms. Effective pricing strategies play a crucial rol... 详细信息
来源: 评论
Efficient Federated Learning Using Dynamic Update and Adaptive Pruning with Momentum on Shared Server Data
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Ji Jia, Juncheng Zhang, Hong Yun, Yuhui Wang, Leye Zhou, Yang Dai, Huaiyu Dou, Dejing Hithink RoyalFlush Information Network Co. Ltd. Hangzhou China School of Computer Science and Technology Soochow University Collaborative Innovation Center of Novel Software Technology and Industrialization Suzhou China School of Computer Science and Technology Soochow University Suzhou China Baidu Research Beijing China Key Lab of High Confidence Software Technologies Ministry of Education Software Institute Peking University Beijing China Department of Computer Science and Software Engineering Auburn University Auburn United States Department of Electrical and Computer Engineering North Carolina State University NC United States BEDI Cloud and School of Computer Science Fudan University Beijing China
Despite achieving remarkable performance, Federated Learning (FL) encounters two important problems, i.e., low training efficiency and limited computational resources. In this paper, we propose a new FL framework, i.e... 详细信息
来源: 评论
LMP-GAN: Out-Of-Distribution Detection For Non-Control Data Malware Attacks
收藏 引用
IEEE Transactions on Pattern Analysis and Machine Intelligence 2025年 PP卷 PP页
作者: Wood, David Kapp, David Kebede, Temesgen Hirakawa, Keigo Wuhan University School of Computer Science China Wuhan University National Engineering Research Center for Multimedia Software Hubei Key Laboratory of Multimedia and Network Communication Engineering China Zhongguancun Academy China Wuhan University State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing China Sun Yat-sen University School of Geography and Planning China Mohamed bin Zayed University of Artificial Intelligence United Arab Emirates Chongqing University College of Computer Science China The University of Tokyo Japan RIKEN Center for Advanced Intelligence Project Japan Intelligent Science & Technology Academy Limited CASIC China iFlytek Company Ltd. National Engineering Research Center of Speech and Language Information Processing China Nanyang Technological University College of Computing & Data Science Singapore Henan Academy of Sciences Aerospace Information Research Institute China
Anomaly detection is a common application of machine learning. Out-of-distribution (OOD) detection in particular is a semi-supervised anomaly detection technique where the detection method is trained only on the inlie... 详细信息
来源: 评论