Edge intelligence (EI) integrates edge computing and artificial intelligence empowering service providers to deploy deep neural networks (DNNs) on edge servers in proximity to users to provision intelligent applicatio...
详细信息
Edge intelligence (EI) integrates edge computing and artificial intelligence empowering service providers to deploy deep neural networks (DNNs) on edge servers in proximity to users to provision intelligent applications (e.g., autonomous driving) for ubiquitous Internet of Things (IoT) in smart cities, which facilitates the quality of experience (QoE) of users and improves the processing and energy efficiency. However, considering DNN is typically computational-intensive and resource-hungry, conventional placement approaches ignore the influence of multi-dimensional resource requirements (processor, memory, etc.), which may degrade the real-time performance. Moreover, with the increasing scale of geo-distributed edge servers, centralized decision-making is still challenging to find the optimal strategies effectively. To overcome these shortcomings, in this paper we propose a game theoretic DNN placement approach in EI-enabled IoT. First, a DNN placement optimization problem is formulated to maximize system benefits, which is proven to be \(\mathcal {N}\mathcal {P}\)-hard and model the original problem as an exact potential game (EPG). Moreover, an EPG-based DNN model placement algorithm, named EPOL, is designed for edge servers to make sub-optimal strategies independently and theoretical analysis is possessed to guarantee the performance of EPOL. Finally, real-world dataset based experimental results corroborate the superiority and effectiveness of EPOL.
Connected Autonomous Vehicle (CAV) Driving, as a data-driven intelligent driving technology within the Internet of Vehicles (IoV), presents significant challenges to the efficiency and security of real-time data manag...
详细信息
Connected Autonomous Vehicle (CAV) Driving, as a data-driven intelligent driving technology within the Internet of Vehicles (IoV), presents significant challenges to the efficiency and security of real-time data management. The combination of Web3.0 and edge content caching holds promise in providing low-latency data access for CAVs’ real-time applications. Web3.0 enables the reliable pre-migration of frequently requested content from content providers to edge nodes. However, identifying optimal edge node peers for joint content caching and replacement remains challenging due to the dynamic nature of traffic flow in IoV. Addressing these challenges, this article introduces GAMA-Cache, an innovative edge content caching methodology leveraging Graph Attention networks (GAT) and Multi-Agent Reinforcement Learning (MARL). GAMA-Cache conceptualizes the cooperative edge content caching issue as a constrained Markov decision process. It employs a MARL technique predicated on cooperation effectiveness to discern optimal caching decisions, with GAT augmenting information extracted from adjacent nodes. A distinct collaborator selection mechanism is also developed to streamline communication between agents, filtering out those with minimal correlations in the vector input to the policy network. Experimental results demonstrate that, in terms of service latency and delivery failure, the GAMA-Cache outperforms other state-of-the-art MARL solutions for edge content caching in IoV.
With the technical advancement of digital media and the medium of communication in recent years, there is a widespread interest in digital entertainment. An emerging te- nical research area edutainment, or educational...
详细信息
ISBN:
(数字)9783642145339
ISBN:
(纸本)9783642145322
With the technical advancement of digital media and the medium of communication in recent years, there is a widespread interest in digital entertainment. An emerging te- nical research area edutainment, or educational entertainment, has been accepted as education using digital entertainment. Edutainment has been recognized as an eff- tive way of learning using modern digital media tools, like computers, games, mobile phones, televisions, or other virtual reality applications, which emphasizes the use of entertainment with application to the education domain. The Edutainment conference series was established in 2006 and subsequently - ganized as a special event for researchers working in this new interest area of e-learning and digital entertainment. The main purpose of Edutainment conferences is to facilitate the discussion, presentation, and information exchange of the scientific and technological development in the new community. The Edutainment conference series becomes a valuable opportunity for researchers, engineers, and graduate s- dents to communicate at these international annual events. The conference series - cludes plenary invited talks, workshops, tutorials, paper presentation tracks, and panel discussions. The Edutainment conference series was initiated in Hangzhou, China in 2006. Following the success of the first event, the second (Edutainment 2007 in Hong Kong, China), third (Edutainment 2008 in Nanjing, China), and fourth editions (Edutainment 2009 in Banff, Canada) were organized. Edutainment 2010 was held during August 16–18, 2010 in Changchun, China. Two workshops were jointly org- ized together with Edutainment 2010.
The advancement of the Internet of Medical Things (IoMT) has led to the emergence of various health and emotion care services, e.g., health monitoring. To cater to increasing computational requirements of IoMT service...
详细信息
The advancement of the Internet of Medical Things (IoMT) has led to the emergence of various health and emotion care services, e.g., health monitoring. To cater to increasing computational requirements of IoMT services, Mobile Edge Computing (MEC) has emerged as an indispensable technology in smart health. Benefiting from the cost-effectiveness of deployment, unmanned aerial vehicles (UAVs) equipped with MEC servers in Non-Orthogonal Multiple Access (NOMA) have emerged as a promising solution for providing smart health services in proximity to medical devices (MDs). However, the escalating number of MDs and the limited availability of communication resources of UAVs give rise to a significant increase in transmission latency. Moreover, due to the limited communication range of UAVs, the geographically-distributed MDs lead to workload imbalance of UAVs, which deteriorates the service response delay. To this end, this paper proposes a UAV-enabled Distributed computation Offloading and Power control method with Multi-Agent, named DOPMA, for NOMA-based IoMT environment. Specifically, this paper introduces computation and transmission queue models to analyze the dynamic characteristics of task execution latency and energy consumption. Moreover, a credit assignment scheme-based reward function is designed considering both system-level rewards and rewards tailored to each MD, and an improved multi-agent deep deterministic policy gradient algorithm is developed to derive offloading and power control decisions independently. Extensive simulations demonstrate that the proposed method outperforms existing schemes, achieving \(7.1\%\) reduction in energy consumption and \(16\%\) decrease in average delay.
暂无评论