Polarity shifting has been a challenge to automatic sentiment classification. In this paper, we create a corpus which consists of polarity-shifted sentences in various kinds of product reviews. In the corpus, both the...
详细信息
As an efficient business process execution language which supports web services, BPEL4WS is widely supported by the academic and the industrial circles. According to the shortcomings such as number of computer terms, ...
详细信息
Online advertisers bidding in keyword auctions through Web search engines are experiencing fierce competition. Based on a model of advertisers' rational competitive preference, we propose a novel solution concept ...
详细信息
Online advertisers bidding in keyword auctions through Web search engines are experiencing fierce competition. Based on a model of advertisers' rational competitive preference, we propose a novel solution concept called the Upper Bound Nash Equilibrium(UBNE) targeting at modeling the competitive bidding dynamics. UBNE yields the best outcome for search engines, and provides a rational explanation of the bid inflation dynamics on keyword markets.
Histogram features, such as SIFT, HOG, LBP et al, are widely used in modern computer vision algorithms. According to [18], chi-square distance is an effective measure for comparing histogram features. In this paper, w...
详细信息
ISBN:
(纸本)9781457701221
Histogram features, such as SIFT, HOG, LBP et al, are widely used in modern computer vision algorithms. According to [18], chi-square distance is an effective measure for comparing histogram features. In this paper, we propose a new method, named the Quadric-chi similarity metric learning (QCSML) for histogram features. The main contribution of this paper is that we propose a new metric learning method based on chi-square distance, in contrast with traditional Mahalanobis distance metric learning methods. The use of quadric-chi similarity in our method leads to an effective learning algorithm. Our method is tested on SIFT features for face identification, and compared with the state-of-art metric learning method (LDML) on the benchmark dataset, the Labeled Faces in the Wild (LFW). Experimental results show that our method can achieve clear performance gains over LDML.
Background modeling is a fundamental yet challenging issue in video surveillance. Traditional methods usually adopt single feature type to solve the problem, while the performance is usually unsatisfactory when handli...
详细信息
ISBN:
(纸本)9781457701221
Background modeling is a fundamental yet challenging issue in video surveillance. Traditional methods usually adopt single feature type to solve the problem, while the performance is usually unsatisfactory when handling complex scenes. In this paper, we propose a multi-scale framework, which combines both texture and intensity feature, to achieve a robust and accurate solution. Our contributions are three folds: first, we provide a multi-scale analysis for the issue;second, for texture feature we propose a novel texture operator named Scale-invariant Centersymmetric Local Ternary Pattern, and a corresponding Pattern Adaptive Kernel Density Estimation technique for its probability estimation;third, we design a Simplified Gaussian Mixture Models for intensity feature. Our method is tested on several complex real world videos with illumination variation, soft shadows and dynamic backgrounds. The experimental results clearly demonstrate that our method is superior to the previous methods.
Image-To-Class distance is first proposed in Naive- Bayes Nearest-Neighbor. NBNN is a feature-based image classifier, and can achieve impressive classification accuracy. However, the performance of NBNN relies heavily...
详细信息
ISBN:
(纸本)9781457701221
Image-To-Class distance is first proposed in Naive- Bayes Nearest-Neighbor. NBNN is a feature-based image classifier, and can achieve impressive classification accuracy. However, the performance of NBNN relies heavily on the large number of training samples. If using small number of training samples, the performance will degrade. The goal of this paper is to address this issue. The main contribution of this paper is that we propose a robust Image-to-Class distance by local learning. We define the patch-to-class distance as the distance between the input patch to its nearest neighbor in one class, which is reconstructed in the local manifold space;and then our image-toclass distance is the sum of patch-to-class distance. Furthermore, we take advantage of large-margin metric learning framework to obtain a proper Mahalanobis metric for each class. We evaluate the proposed method on four benchmark datasets: Caltech, Corel, Scene13, and Graz. The results show that our defined Image-To-Class Distance is more robust than NBNN and Optimal-NBNN, and by combining with the learned metric for each class, our method can achieve significant improvement over previous reported results on these datasets.
Recently, Independent Component Analysis based foreground detection has been proposed for indoor surveillance applications where the foreground tends to move slowly or remain still. Yet such a method often causes disc...
详细信息
ISBN:
(纸本)9781457701221
Recently, Independent Component Analysis based foreground detection has been proposed for indoor surveillance applications where the foreground tends to move slowly or remain still. Yet such a method often causes discrete segmented foreground objects. In this paper, we propose a novel foreground detection method named Contextual Constrained Independent Component Analysis (CCICA) to tackle this problem. In our method, the contextual constraints are explicitly added to the optimization objective function, which indicate the similarity relationship among neighboring pixels. In this way, the obtained de-mixing matrix can produce the complete foreground compared with the previous ICA model. In addition, our method performs robust to the indoor illumination changes and features a high processing speed. Two sets of image sequences involving room lights switching on/of and door opening/closing are tested. The experimental results clearly demonstrate an improvement over the basic ICA model and the image difference method.
The mean-square exponential stability problem is investigated for a class of stochastic time-varying delay systems with Markovian jumping parameters. By decomposing the delay interval into multiple equidistant subinte...
详细信息
The mean-square exponential stability problem is investigated for a class of stochastic time-varying delay systems with Markovian jumping parameters. By decomposing the delay interval into multiple equidistant subintervals, a new delay-dependent and decay-rate-dependent criterion is presented based on constructing a novel Lyapunov functional and employing stochastic analysis technique. Besides, the decay rate has no conventional constraint and can be selected according to different practical conditions. Finally, two numerical examples are provided to show that the obtained result has less conservatism than some existing ones in the literature.
In this work, we took the analysis of neural interactions change in M1 of a monkey during the adaptation process for it to complete reach-to-grasp tasks with external perturbation across days. BN model was applied to ...
详细信息
Wireless sensor networks consist of a large number of sensor nodes that have low power and limited transmission range and can be used in various scenario. The nodes can be deployed in the long and narrow region, such ...
详细信息
暂无评论