咨询与建议

限定检索结果

文献类型

  • 6,315 篇 会议
  • 4,488 篇 期刊文献
  • 15 册 图书

馆藏范围

  • 10,818 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,357 篇 工学
    • 5,537 篇 计算机科学与技术...
    • 4,556 篇 软件工程
    • 1,351 篇 信息与通信工程
    • 936 篇 控制科学与工程
    • 665 篇 生物工程
    • 633 篇 电气工程
    • 553 篇 机械工程
    • 550 篇 电子科学与技术(可...
    • 416 篇 光学工程
    • 325 篇 生物医学工程(可授...
    • 299 篇 化学工程与技术
    • 270 篇 仪器科学与技术
    • 206 篇 网络空间安全
    • 201 篇 动力工程及工程热...
    • 185 篇 建筑学
    • 175 篇 土木工程
    • 172 篇 安全科学与工程
    • 168 篇 材料科学与工程(可...
    • 166 篇 交通运输工程
  • 3,499 篇 理学
    • 2,132 篇 数学
    • 740 篇 物理学
    • 737 篇 生物学
    • 600 篇 统计学(可授理学、...
    • 398 篇 系统科学
    • 305 篇 化学
  • 2,080 篇 管理学
    • 1,223 篇 管理科学与工程(可...
    • 921 篇 图书情报与档案管...
    • 398 篇 工商管理
  • 258 篇 法学
    • 190 篇 社会学
  • 234 篇 医学
    • 193 篇 临床医学
  • 143 篇 经济学
  • 93 篇 教育学
  • 93 篇 农学
  • 37 篇 艺术学
  • 34 篇 文学
  • 27 篇 军事学
  • 2 篇 哲学

主题

  • 297 篇 semantics
  • 255 篇 computer science
  • 223 篇 laboratories
  • 208 篇 feature extracti...
  • 188 篇 computational mo...
  • 169 篇 deep learning
  • 155 篇 optimization
  • 142 篇 data mining
  • 133 篇 wireless sensor ...
  • 131 篇 training
  • 129 篇 software enginee...
  • 129 篇 software
  • 117 篇 algorithm design...
  • 110 篇 image segmentati...
  • 108 篇 accuracy
  • 105 篇 neural networks
  • 105 篇 educational inst...
  • 104 篇 task analysis
  • 103 篇 machine learning
  • 97 篇 conferences

机构

  • 1,836 篇 state key labora...
  • 242 篇 national key lab...
  • 207 篇 department of co...
  • 201 篇 university of ch...
  • 176 篇 state key labora...
  • 172 篇 department of co...
  • 132 篇 tianjin key labo...
  • 118 篇 nanjing universi...
  • 113 篇 state key labora...
  • 109 篇 state key labora...
  • 95 篇 school of comput...
  • 94 篇 state key labora...
  • 92 篇 school of inform...
  • 91 篇 school of comput...
  • 90 篇 college of compu...
  • 88 篇 beijing key labo...
  • 87 篇 college of compu...
  • 84 篇 key laboratory o...
  • 80 篇 college of compu...
  • 77 篇 state key labora...

作者

  • 91 篇 gao yang
  • 53 篇 liu yang
  • 49 篇 baowen xu
  • 48 篇 wu gangshan
  • 48 篇 guihai chen
  • 47 篇 sanglu lu
  • 46 篇 zhou zhi-hua
  • 45 篇 junping du
  • 41 篇 limin wang
  • 41 篇 shen furao
  • 40 篇 yin baocai
  • 39 篇 lu sanglu
  • 36 篇 zhang hua
  • 36 篇 zhao jian
  • 35 篇 shi yinghuan
  • 34 篇 baocai yin
  • 34 篇 wang wei
  • 34 篇 zhang yan
  • 31 篇 wanchun dou
  • 30 篇 zhenyu chen

语言

  • 9,405 篇 英文
  • 1,112 篇 其他
  • 315 篇 中文
  • 2 篇 德文
检索条件"机构=State Key Laboratory for Novel Software Technology Computer Science and Technology"
10818 条 记 录,以下是371-380 订阅
排序:
Dynamic Graph Recommendation via Sparse Augmentation and Singular Adaptation
Dynamic Graph Recommendation via Sparse Augmentation and Sin...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Tao, Zhen Cao, Yuehang Fang, Yang Liu, Yunhui Zhao, Xiang He, Tieke State Key Laboratory for Novel Software Technology Nanjing University Nanjing China Laboratory for Big Data and Decision National University of Defense Technology Changsha China National University of Defense Technology Changsha China
Dynamic recommendation, focusing on modeling user preference from historical interactions and providing recommendations on current time, plays a key role in many personalized services. Recent works show that pre-train... 详细信息
来源: 评论
A Comprehensive Review on Deep Learning System Testing  24th
A Comprehensive Review on Deep Learning System Testing
收藏 引用
24th International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 2024
作者: Li, Ying Shan, Chun Liu, Zhen Liao, Shuyan Beijing Key Laboratory of Software Security Engineering Technology Beijing Institute of Technology Beijing China School of Computer Science and Technology Beijing Institute of Technology Beijing China Computer School Beijing Information Science and Technology University Beijing China School of Cyberspace Science and Technology Beijing Institute of Technology Beijing China
Deep learning(DL) systems exhibit multiple behavioral characteristics such as correctness, robustness, and fairness. Ensuring that these behavioral characteristics function properly is crucial for maintaining the accu... 详细信息
来源: 评论
PFedCS: A Personalized Federated Learning Method for Enhancing Collaboration among Similar Classifiers  39
PFedCS: A Personalized Federated Learning Method for Enhanci...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Wu, Siyuan Jia, Yongzhe Liu, Bowen Xiang, Haolong Xu, Xiaolong Dou, Wanchun State Key Laboratory for Novel Software Technology School of Computer Science Nanjing University China School of Software Nanjing University of Information Science and Technology China
Personalized federated learning (PFL) has recently gained significant attention for its capability to address the poor convergence performance on highly heterogeneous data and the lack of personalized solutions of tra... 详细信息
来源: 评论
TH-SLP: Web Service Link Prediction Based on Topic-aware Heterogeneous Graph Neural Network
TH-SLP: Web Service Link Prediction Based on Topic-aware Het...
收藏 引用
2023 IEEE International Conference on Web Services, ICWS 2023
作者: Peng, Qian Cao, Buqing Xie, Xiang Liu, Shanpeng Kang, Guosheng Liu, Jianxun Hunan University of Science and Technology Xiangtan School of Computer Science and Engineering Hunan Provincial Key Lab. for Services Computing and Novel Software Technology Hunan China
With the emergence of more and more Web services, finding suitable services becomes a difficult problem. Service link prediction is employed to disclose relationships among services, which facilitates the further deve... 详细信息
来源: 评论
Boosting Adversarial Training with Learnable Distribution
收藏 引用
computers, Materials & Continua 2024年 第3期78卷 3247-3265页
作者: Kai Chen Jinwei Wang James Msughter Adeke Guangjie Liu Yuewei Dai School of Electronics and Information Engineering Nanjing University of Information Science and TechnologyNanjing210044China Key Laboratory of Intelligent Support Technology for Complex Environments Ministry of EducationNanjing210044China School of Computer and Software Nanjing University of Information Science and TechnologyNanjing210044China Nanjing Center for Applied Mathematics Nanjing211135China
In recent years,various adversarial defense methods have been proposed to improve the robustness of deep neural *** training is one of the most potent methods to defend against adversarial ***,the difference in the fe... 详细信息
来源: 评论
Raven: Benchmarking Monetary Expense and Query Efficiency of OLAP Engines on the Cloud  28th
Raven: Benchmarking Monetary Expense and Query Efficiency o...
收藏 引用
28th International Conference on Database Systems for Advanced Applications, DASFAA 2023
作者: Wu, Tongyu Gu, Rong Li, Yang Ma, Hongbin Chen, Yi Zhu, Ying Yu, Xiaoxiang Xu, Tengting Huang, Yihua State Key Laboratory for Novel Software Technology Nanjing University Nanjing China Kyligence Inc. Shanghai China
Nowadays, it is prevalent to build OLAP services on cloud platforms. Cloud OLAP adopters are eager to understand and characterize the performance of OLAP engines on the cloud. However, traditional OLAP benchmarks are ... 详细信息
来源: 评论
LIBALCHEMY: A Two-Layer Persistent Summary Design for Taming Third-Party Libraries in Static Bug-Finding Systems  24
LIBALCHEMY: A Two-Layer Persistent Summary Design for Taming...
收藏 引用
44th ACM/IEEE International Conference on software Engineering, ICSE 2024
作者: Wu, Rongxin He, Yuxuan Huang, Jiafeng Wang, Chengpeng Tang, Wensheng Shi, Qingkai Xiao, Xiao Zhang, Charles Xiamen Key Laboratory of Intelligent Storage and Computing School of Informatics Xiamen University Xiamen China The Hong Kong University of Science and Technology Hong Kong State Key Laboratory for Novel Software Technology Nanjing University Nanjing China Person Hang Zhou China
Despite the benefits of using third-party libraries (TPLs), the misuse of TPL functions raises quality and security concerns. Using traditional static analysis to detect bugs caused by TPL function is nontrivial. One ... 详细信息
来源: 评论
Long-Tail Learning with Foundation Model: Heavy Fine-Tuning Hurts  41
Long-Tail Learning with Foundation Model: Heavy Fine-Tuning ...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Shi, Jiang-Xin Wei, Tong Zhou, Zhi Shao, Jie-Jing Han, Xin-Yan Li, Yu-Feng National Key Laboratory for Novel Software Technology Nanjing University China School of Artificial Intelligence Nanjing University China School of Computer Science and Engineering Southeast University China Key Laboratory of Computer Network and Information Integration Southeast University Ministry of Education China
The fine-tuning paradigm in addressing long-tail learning tasks has sparked significant interest since the emergence of foundation models. Nonetheless, how fine-tuning impacts performance in long-tail learning was not... 详细信息
来源: 评论
SLAM: Towards Efficient Multilingual Reasoning via Selective Language Alignment  31
SLAM: Towards Efficient Multilingual Reasoning via Selective...
收藏 引用
31st International Conference on Computational Linguistics, COLING 2025
作者: Fan, Yuchun Mu, Yongyu Wang, Yilin Huang, Lei Ruan, Junhao Li, Bei Xiao, Tong Huang, Shujian Feng, Xiaocheng Zhu, Jingbo NLP Lab School of Computer Science and Engineering Northeastern University Shenyang China NiuTrans Research Shenyang China Harbin Institute of Technology Harbin China Meituan Inc. National Key Laboratory for Novel Software Technology Nanjing University China
Despite the significant improvements achieved by large language models (LLMs) in English reasoning tasks, these models continue to struggle with multilingual reasoning. Recent studies leverage a full-parameter and two... 详细信息
来源: 评论
Improved Regret for Bandit Convex Optimization with Delayed Feedback  38
Improved Regret for Bandit Convex Optimization with Delayed ...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Wan, Yuanyu Yao, Chang Song, Mingli Zhang, Lijun School of Software Technology Zhejiang University Ningbo China State Key Laboratory of Blockchain and Data Security Zhejiang University Hangzhou China Institute of Blockchain and Data Security Hangzhou China National Key Laboratory for Novel Software Technology Nanjing University Nanjing China
We investigate bandit convex optimization (BCO) with delayed feedback, where only the loss value of the action is revealed under an arbitrary delay. Let n, T, d¯ denote the dimensionality, time horizon, and avera...
来源: 评论