咨询与建议

限定检索结果

文献类型

  • 6,315 篇 会议
  • 4,482 篇 期刊文献
  • 15 册 图书

馆藏范围

  • 10,812 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,358 篇 工学
    • 5,537 篇 计算机科学与技术...
    • 4,556 篇 软件工程
    • 1,351 篇 信息与通信工程
    • 936 篇 控制科学与工程
    • 665 篇 生物工程
    • 632 篇 电气工程
    • 553 篇 机械工程
    • 550 篇 电子科学与技术(可...
    • 416 篇 光学工程
    • 325 篇 生物医学工程(可授...
    • 299 篇 化学工程与技术
    • 270 篇 仪器科学与技术
    • 206 篇 网络空间安全
    • 201 篇 动力工程及工程热...
    • 185 篇 建筑学
    • 175 篇 土木工程
    • 172 篇 安全科学与工程
    • 168 篇 材料科学与工程(可...
    • 166 篇 交通运输工程
  • 3,499 篇 理学
    • 2,132 篇 数学
    • 740 篇 物理学
    • 737 篇 生物学
    • 600 篇 统计学(可授理学、...
    • 398 篇 系统科学
    • 305 篇 化学
  • 2,080 篇 管理学
    • 1,223 篇 管理科学与工程(可...
    • 921 篇 图书情报与档案管...
    • 398 篇 工商管理
  • 258 篇 法学
    • 190 篇 社会学
  • 234 篇 医学
    • 193 篇 临床医学
  • 143 篇 经济学
  • 93 篇 教育学
  • 93 篇 农学
  • 37 篇 艺术学
  • 34 篇 文学
  • 27 篇 军事学
  • 2 篇 哲学

主题

  • 296 篇 semantics
  • 255 篇 computer science
  • 223 篇 laboratories
  • 208 篇 feature extracti...
  • 188 篇 computational mo...
  • 169 篇 deep learning
  • 155 篇 optimization
  • 142 篇 data mining
  • 136 篇 training
  • 133 篇 wireless sensor ...
  • 131 篇 software
  • 129 篇 software enginee...
  • 116 篇 algorithm design...
  • 110 篇 image segmentati...
  • 105 篇 neural networks
  • 105 篇 educational inst...
  • 105 篇 accuracy
  • 104 篇 task analysis
  • 103 篇 machine learning
  • 97 篇 conferences

机构

  • 1,837 篇 state key labora...
  • 242 篇 national key lab...
  • 208 篇 department of co...
  • 201 篇 university of ch...
  • 177 篇 state key labora...
  • 170 篇 department of co...
  • 134 篇 tianjin key labo...
  • 118 篇 nanjing universi...
  • 109 篇 state key labora...
  • 106 篇 state key labora...
  • 94 篇 school of comput...
  • 91 篇 school of comput...
  • 90 篇 college of compu...
  • 87 篇 school of inform...
  • 86 篇 state key labora...
  • 84 篇 beijing key labo...
  • 83 篇 key laboratory o...
  • 81 篇 college of compu...
  • 79 篇 college of compu...
  • 78 篇 state key labora...

作者

  • 93 篇 gao yang
  • 53 篇 liu yang
  • 48 篇 baowen xu
  • 48 篇 wu gangshan
  • 46 篇 zhou zhi-hua
  • 46 篇 guihai chen
  • 46 篇 sanglu lu
  • 41 篇 limin wang
  • 41 篇 shen furao
  • 40 篇 lu sanglu
  • 37 篇 zhang hua
  • 37 篇 yin baocai
  • 36 篇 zhao jian
  • 36 篇 junping du
  • 34 篇 baocai yin
  • 33 篇 zhang yan
  • 32 篇 wang wei
  • 31 篇 shi yinghuan
  • 31 篇 dou wanchun
  • 30 篇 zhenyu chen

语言

  • 9,400 篇 英文
  • 1,112 篇 其他
  • 314 篇 中文
  • 2 篇 德文
检索条件"机构=State Key Laboratory for Novel Software Technology Computer Science and Technology"
10812 条 记 录,以下是4991-5000 订阅
排序:
Anomaly Detection of Vehicle CAN Network Based on Message Content  2nd
Anomaly Detection of Vehicle CAN Network Based on Message Co...
收藏 引用
2nd EAI International Conference on Security and Privacy in New Computing Environments, SPNCE 2019
作者: Mo, Xiuliang Chen, Pengyuan Wang, Jianing Wang, Chundong Key Laboratory of Computer Vision and System Ministry of Education Tianjin University of Technology Tianjin300384 China Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology Ministry of Education Tianjin University of Technology Tianjin300384 China Sichuan University ChengduSichuan610207 China
With the rapid advance of intelligent vehicles, auxiliary driving and automatic driving have been paid more attention to. While vehicle security has become increasingly prominent, which is seriously related to the pro... 详细信息
来源: 评论
Collaborative self-attention for recommender systems
arXiv
收藏 引用
arXiv 2019年
作者: Yao, Kai-Lang Li, Wu-Jun National Key Laboratory for Novel Software Technology Deptpartment of Computer Science and Technology Nanjing University China
Recommender systems (RS), which have been an essential part in a wide range of applications, can be formulated as a matrix completion (MC) problem. To boost the performance of MC, matrix completion with side informati... 详细信息
来源: 评论
Context-Aware Point-of-Interest Recommendation Algorithm with Interpretability  15th
Context-Aware Point-of-Interest Recommendation Algorithm wit...
收藏 引用
15th EAI International Conference on Collaborative Computing: Networking, Applications and Worksharing, CollaborateCom 2019
作者: Zhang, Guoming Qi, Lianyong Zhang, Xuyun Xu, Xiaolong Dou, Wanchun State Key Laboratory for Novel Software Technology Nanjing University Nanjing China School of Information Science and Engineering Qufu Normal University Qufu China Department of Electrical Computer Engineering The University of Auckland Auckland New Zealand School of Computer and Software Nanjing University of Information Science and Technology Nanjing China Health Statistics and Information Center of Jiangsu Province Nanjing China
With the rapid development of mobile Internet, smart devices, and positioning technologies, location-based social networks (LBSNs) are growing rapidly. In LBSNs, point-of-interest (POI) recommendation is a crucial per... 详细信息
来源: 评论
The 2D Materials Roadmap
arXiv
收藏 引用
arXiv 2025年
作者: Ren, Wencai Bøggild, Peter Redwing, Joan Marie Novoselov, Kostya Sun, Luzhao Qi, Yue Jia, Kaicheng Liu, Zhongfan Burton, Oliver Alexander-Webber, Jack Hofmann, Stephan Cao, Yang Long, Yu Yang, Quan-Hong Li, Dan Choi, Soo Ho Kim, Ki Kang Lee, Young Hee Li, Mian Huang, Qing Gogotsi, Yury Clark, Nicholas Carl, Amy Gorbachev, Roman Olsen, Thomas Rosen, Johanna Thygesen, Kristian Sommer Efetov, Dmitri K. Jessen, Bjarke S. Yankowitz, Matthew Barrier, Julien Kumar, Roshan Krishna Koppens, Frank H.L. Deng, Hui Li, Xiaoqin Dai, Siyuan Basov, D.N. Wang, Xinran Das, Saptarshi Duan, Xiangfeng Yu, Zhihao Borsch, Markus Ferrari, Andrea C. Huber, Rupert Kira, Mackillo Xia, Fengnian Wang, Xiao Wu, Zhong-Shuai Feng, Xinliang Simon, Patrice Cheng, Hui-Ming Liu, Bilu Xie, Yi Jin, Wanqin Nair, Rahul Raveendran Xu, Yan Zhang, Qing Katiyar, Ajit K. Ahn, Jong-Hyun Aharonovich, Igor Hersam, Mark C. Roche, Stephan Hua, Qilin Shen, Guozhen Ren, Tianling Zhang, Hao-Bin Koo, Chong Min Koratkar, Nikhil Pellegrini, Vittorio Young, Robert J. Qu, Bill Lemme, Max Pollard, Andrew J. Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences 72 Wenhua Road Shenyang110016 China Technical University of Denmark Denmark The Pennsylvania State University United States University of Manchester United Kingdom Institute for Functional Intelligent Materials National University of Singapore Singapore Beijing Graphene Institute China University of Cambridge United Kingdom Department of Chemical Engineering The University of Melbourne Victoria Australia Nanoyang Group Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage School of Chemical Engineering and Technology Tianjin University Tianjin300072 China The Hong Kong University of Science and Technology Hong Kong Center for Integrated Nanostructure Physics Institute for Basic Science Suwon16419 Korea Republic of Sungkyunkwan University Suwon16419 Korea Republic of Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences China Drexel University United States Linköping University Sweden Ludwig-Maximilians-Universität München Germany University of Washington United States ICFO The Institute of Photonic Sciences Castelldefels Barcelona08860 Spain University of Michigan United States University of Texas Austin United States Auburn University United States Columbia University United States State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China University of California Los Angeles United States Suzhou Laboratory Suzhou China School of Integrated Circuit Science and Engineering Nanjing University of Posts and Telecommunications Nanjing210023 China Department of Electrical Engineering and Computer Science University of Michigan Ann ArborMI United States University of Regensburg Germany Department of Electrical and Computer Engineering Yale University New Have
Over the past two decades, 2D materials have rapidly evolved into a diverse and expanding family of material platforms. Many members of this materials class have demonstrated their potential to deliver transformative ... 详细信息
来源: 评论
Enhanced Sparse Model for Blind Deblurring  16th
Enhanced Sparse Model for Blind Deblurring
收藏 引用
16th European Conference on computer Vision, ECCV 2020
作者: Chen, Liang Fang, Faming Lei, Shen Li, Fang Zhang, Guixu Shanghai Key Laboratory of Multidimensional Information Processing School of Computer Science and Technology East China Normal University Shanghai China School of Software Engineering East China Normal University Shanghai China School of Mathematical Sciences East China Normal University Shanghai China
Existing arts have shown promising efforts to deal with the blind deblurring task. However, most of the recent works assume the additive noise involved in the blurring process to be simple-distributed (i.e. Gaussian o... 详细信息
来源: 评论
Quantum Experiments and Hypergraphs: Multi-Photon Sources for Quantum Interference, Quantum Computation and Quantum Entanglement
arXiv
收藏 引用
arXiv 2020年
作者: Gu, Xuemei Chen, Lijun Krenn, Mario State Key Laboratory for Novel Software Technology Nanjing University 163 Xianlin Avenue Qixia District Nanjing City210023 China Department of Chemistry & Computer Science University of Toronto Canada & Vector Institute for Artificial Intelligence Toronto Canada
We introduce the concept of hypergraphs to describe quantum optical experiments with probabilistic multi-photon sources. Every hyperedge represents a correlated photon source, and every vertex stands for an optical ou... 详细信息
来源: 评论
ECML: An Ensemble Cascade Metric Learning Mechanism towards Face Verification
arXiv
收藏 引用
arXiv 2020年
作者: Xiong, Fu Xiao, Yang Cao, Zhiguo Wang, Yancheng Zhou, Joey Tianyi Wu, Jianxin National Key Laboratory of Science and Technology on Multispectral Information Processing School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan430074 China Institute of High Performance Computing A*STAR Singapore Singapore National Key Laboratory for Novel Software Technology Nanjing University Nanjing210023 China
Face verification can be regarded as a 2-class fine-grained visual recognition problem. Enhancing the feature’s discriminative power is one of the key problems to improve its performance. Metric learning technology i... 详细信息
来源: 评论
Crosslink-net: Double-branch encoder segmentation network via fusing vertical and horizontal convolutions
arXiv
收藏 引用
arXiv 2021年
作者: Yu, Qian Qi, Lei Zhou, Luping Wang, Lei Yin, Yilong Shi, Yinghuan Wang, Wuzhang Gao, Yang School of Data and Computer Science Shandong Women's University Jinan250300 China The State Key Laboratory for Novel Software Technology Nanjing University Nanjing210023 China School of Computer Science and Engineering Southeast University Nanjing211189 China The School of Electrical and Information Engineering University of Sydney NSW2006 Australia The School of Computing and Information Technology University of Wollongong WollongongNSW2522 Australia The School of Soft Shandong University Jinan250100 China Department of Respiratory and Critical Care Medicine Shandong Chest Hospital Jinan250013 China
Accurate image segmentation plays a crucial role in medical image analysis, yet it faces great challenges of various shapes, diverse sizes, and blurry boundaries. To address these difficulties, square kernel-based enc... 详细信息
来源: 评论
Parametric Model Estimation for 3D Clothed Humans from Point Clouds
Parametric Model Estimation for 3D Clothed Humans from Point...
收藏 引用
International Symposium on Mixed and Augmented Reality (ISMAR)
作者: Kangkan Wang Huayu Zheng Guofeng Zhang Jian Yang Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education Jiangsu Key Lab of Image and Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology China State Key Laboratory of CAD&CG Zhejiang University China
This paper presents a novel framework to estimate parametric model- s for 3D clothed humans from partial point clouds. It is a challenging problem due to factors such as arbitrary human shape and pose, large variation... 详细信息
来源: 评论
Cross-modality brain tumor segmentation via bidirectional global-to-local unsupervised domain adaptation
arXiv
收藏 引用
arXiv 2021年
作者: He, Kelei Ji, Wen Zhou, Tao Li, Zhuoyuan Huo, Jing Zhang, Xin Gao, Yang Shen, Dinggang Zhang, Bing Zhang, Junfeng Medical School of Nanjing University Nanjing China The National Institute of Healthcare Data Science Nanjing University Nanjing China The State Key Laboratory for Novel Software Technology Nanjing University Nanjing China School of Computer Science and Technology Nanjing University of Science and Technology Nanjing China Department of Radiology Nanjing Drum Tower Hospital Nanjing University Medical School China School of Biomedical Engineering ShanghaiTech University Shanghai China Department of Research and Development Shanghai United Imaging Intelligence Co. Ltd. Shanghai China Department of Artificial Intelligence Korea University Seoul Korea Republic of
Accurate segmentation of brain tumors from multi-modal Magnetic Resonance (MR) images is essential in brain tumor diagnosis and treatment. However, due to the existence of domain shifts among different modalities, the... 详细信息
来源: 评论