咨询与建议

限定检索结果

文献类型

  • 2,962 篇 会议
  • 2,526 篇 期刊文献
  • 13 册 图书

馆藏范围

  • 5,501 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,833 篇 工学
    • 2,869 篇 计算机科学与技术...
    • 2,324 篇 软件工程
    • 711 篇 信息与通信工程
    • 522 篇 控制科学与工程
    • 335 篇 电气工程
    • 331 篇 生物工程
    • 309 篇 电子科学与技术(可...
    • 269 篇 机械工程
    • 223 篇 光学工程
    • 197 篇 生物医学工程(可授...
    • 151 篇 仪器科学与技术
    • 138 篇 化学工程与技术
    • 134 篇 动力工程及工程热...
    • 110 篇 网络空间安全
    • 92 篇 土木工程
    • 91 篇 建筑学
  • 1,815 篇 理学
    • 1,109 篇 数学
    • 397 篇 物理学
    • 373 篇 生物学
    • 303 篇 统计学(可授理学、...
    • 237 篇 系统科学
    • 143 篇 化学
  • 1,090 篇 管理学
    • 669 篇 管理科学与工程(可...
    • 455 篇 图书情报与档案管...
    • 217 篇 工商管理
  • 151 篇 医学
    • 128 篇 临床医学
    • 105 篇 基础医学(可授医学...
    • 77 篇 药学(可授医学、理...
  • 135 篇 法学
    • 100 篇 社会学
  • 76 篇 经济学
    • 76 篇 应用经济学
  • 55 篇 教育学
  • 47 篇 农学
  • 17 篇 文学
  • 14 篇 军事学
  • 14 篇 艺术学

主题

  • 179 篇 computer science
  • 135 篇 laboratories
  • 130 篇 semantics
  • 96 篇 feature extracti...
  • 92 篇 optimization
  • 91 篇 training
  • 90 篇 wireless sensor ...
  • 83 篇 deep learning
  • 82 篇 data mining
  • 81 篇 software
  • 80 篇 computational mo...
  • 70 篇 algorithm design...
  • 66 篇 software enginee...
  • 62 篇 clustering algor...
  • 62 篇 cloud computing
  • 61 篇 testing
  • 58 篇 accuracy
  • 57 篇 software testing
  • 57 篇 web services
  • 56 篇 application soft...

机构

  • 1,066 篇 state key labora...
  • 222 篇 national key lab...
  • 212 篇 department of co...
  • 175 篇 department of co...
  • 140 篇 school of inform...
  • 118 篇 state key labora...
  • 117 篇 state key labora...
  • 107 篇 state key labora...
  • 104 篇 college of compu...
  • 90 篇 university of ch...
  • 82 篇 shandong provinc...
  • 80 篇 school of comput...
  • 72 篇 shandong provinc...
  • 70 篇 department of co...
  • 58 篇 school of softwa...
  • 58 篇 school of artifi...
  • 57 篇 shanghai key lab...
  • 51 篇 state key labora...
  • 51 篇 nanjing universi...
  • 51 篇 state key labora...

作者

  • 67 篇 gao yang
  • 48 篇 shi yinghuan
  • 44 篇 dou wanchun
  • 42 篇 guihai chen
  • 39 篇 sanglu lu
  • 38 篇 zhou zhi-hua
  • 37 篇 li wu-jun
  • 32 篇 baowen xu
  • 32 篇 junping du
  • 31 篇 shen furao
  • 31 篇 yu huiqun
  • 30 篇 xu baowen
  • 29 篇 zhao jian
  • 29 篇 zhang lijun
  • 29 篇 liu hong
  • 28 篇 lu sanglu
  • 28 篇 fan guisheng
  • 26 篇 yang tianbao
  • 26 篇 xu xiaolong
  • 25 篇 wanchun dou

语言

  • 4,650 篇 英文
  • 709 篇 其他
  • 144 篇 中文
  • 2 篇 德文
检索条件"机构=State Key Laboratory for Novel Software Technology Department of Computer Science and Technology"
5501 条 记 录,以下是1441-1450 订阅
排序:
Label Informed Contrastive Pretraining for Node Importance Estimation on Knowledge Graphs
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Tianyu Hou, Chengbin Jiang, Rui Zhang, Xuegong Zhou, Chenghu Tang, Ke Lv, Hairong The Ministry of Education Key Laboratory of Bioinformatics Bioinformatics Division Beijing National Research Center for Information Science and Technology Department of Automation Tsinghua University Beijing100084 China The School of Computer Science and Engineering Fuyao Institute of Technology Fuzhou350109 China The State Key Laboratory of Resources and Environmental Information Systems Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing100101 China The Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China The Fuzhou Institute of Data Technology Fuzhou350200 China
Node Importance Estimation (NIE) is a task of inferring importance scores of the nodes in a graph. Due to the availability of richer data and knowledge, recent research interests of NIE have been dedicating to knowled... 详细信息
来源: 评论
Meta-Learning with Task-Adaptive Selection
收藏 引用
IEEE Transactions on Circuits and Systems for Video technology 2025年
作者: Wan, Quan Wang, Maofa Shan, Weifeng Wang, Bin Zhang, Lu Leng, Zhixiong Yan, Bingchen Xu, Yanlin Chen, Huiling Beijing Information Science and Technology University School of Applied Science Beijing100192 China Guilin University of Electronic Technology Guangxi Key Laboratory of Trusted Software Guilin541004 China Institute of Disaster Prevention School of Emergency Management Langfang065201 China China Geological Survey Command Center of Natural Resources Comprehensive Survey Beijing100055 China Southern University of Science and Technology Department of Earth and Space Sciences Shenzhen518055 China Wenzhou University Department of Computer Science and Artificial Intelligence Wenzhou325035 China
The gradient-based meta-learning algorithm gains meta-learning parameters from a pool of tasks. Starting from the obtained meta-learning parameters, it can achieve better results through fast fine-tuning with only a f... 详细信息
来源: 评论
TEVA: Training-Efficient and Verifiable Aggregation for Federated Learning for Consumer Electronics in Industry 5.0
收藏 引用
IEEE Transactions on Consumer Electronics 2024年
作者: Xia, Yuanjun Liu, Yining Chen, Jingxue Liang, Yangfan Khan, Fazlullah Alturki, Ryan Wang, Xiaopei Guilin University of Electronic Technology Guangxi Key Laboratory of Trusted Software School of Computer and Information Security Guilin541004 China Wenzhou University of Technology School of Data Science and Artificial Intelligence Wenzhou325027 China University of Technology School of Mathematical and Physical Sciences SydneyNSW2007 Australia Jiaxing University Provincial Key Laboratory of Multimodal Perceiving and Intelligent Systems The Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province The Engineering Research Center of Intelligent Human Health Situation Awareness of Zhejiang Province Jiaxing314001 China University of Nottingham Ningbo China School of Computer Science Faculty of Science and Engineering Zhejiang Ningbo315104 China Umm AI-Qura University Makkah Department of Software Engineering College of Computing Saudi Arabia Riverside Department of Computer Science and Engineering University of California CA92521 United States
Federated learning (FL) has been widely used for privacy-preserving model updates in Industry 5.0, facilitated by 6G networks. Despite FL's privacy-preserving advantages, it remains vulnerable to attacks where adv... 详细信息
来源: 评论
Adapter-Enhanced Semantic Prompting for Continual Learning
arXiv
收藏 引用
arXiv 2024年
作者: Yin, Baocai Zhao, Ji Jiang, Huajie Hou, Ningning Hu, Yongli Beheshti, Amin Yang, Ming-Hsuan Qi, Yuankai Beijing Key Laboratory of Multimedia and Intelligent Software Technology Beijing Institute of Artificial Intelligence Faculty of Information Technology Beijing University of Technology Beijing100124 China Department of Electrical Engineering and Computer Science University of California at Merced MercedCA95343 United States School of Computing Macquarie University SydneyNSW2109 Australia
Continual learning (CL) is essential for enabling models to adapt to dynamic data streams, with the primary challenge being the mitigation of catastrophic forgetting of previously acquired knowledge. Recent advancemen... 详细信息
来源: 评论
HOIAnimator: Generating Text-Prompt Human-Object Animations Using novel Perceptive Diffusion Models
HOIAnimator: Generating Text-Prompt Human-Object Animations ...
收藏 引用
Conference on computer Vision and Pattern Recognition (CVPR)
作者: Wenfeng Song Xinyu Zhang Shuai Li Yang Gao Aimin Hao Xia Hau Chenglizhao Chen Ning Li Hong Qin Beijing Information Science and Technology University Zhongguancun Laboratory China State Key Laboratory of Virtual Reality Technology and Systems Beihang University Research Unit of Virtual Human and Virtual Surgery (2019RU004) Chinese Academy of Medical Sciences College of Computer Science and Technology China University of Petroleum (East China) Department of Computer Science Stony Brook University (SUNY at Stony Brook) New York USA
To date, the quest to rapidly and effectively produce human-object interaction (HOI) animations directly from textual descriptions stands at the forefront of computer vision research. The underlying challenge demands ... 详细信息
来源: 评论
Enabling Communication-Efficient Federated Learning via Distributed Compressed Sensing
Enabling Communication-Efficient Federated Learning via Dist...
收藏 引用
IEEE Annual Joint Conference: INFOCOM, IEEE computer and Communications Societies
作者: Yixuan Guan Xuefeng Liu Tao Ren Jianwei Niu State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang University Beijing China Zhongguancun Laboratory Beijing China Laboratory for Internet Software Technologies Institute of Software Chinese Academy of Sciences Beijing China Zhengzhou University Research Institute of Industrial Technology School of Information Engineering Zhengzhou University Zhengzhou China
Federated learning (FL) trains a shared global model by periodically aggregating gradients from local devices. Communication overhead becomes a principal bottleneck in FL since participating devices usually suffer fro...
来源: 评论
Enhancing Resilience of Power Systems with Fuel Cell-Battery Hybrid Energy Storage System
Enhancing Resilience of Power Systems with Fuel Cell-Battery...
收藏 引用
Power science and technology (ICPST), IEEE International Conference on
作者: Mingjian Tuo Muhoza Bertrand Cunzhi Zhao Mulan Zhang Hubei Key Laboratory of Energy Storage and Power Battery Hubei University of Automotive Technology Shiyan China College of Electrical & Information Hubei University of Automotive Technology Shiyan China Department of Engineering and Computer Science McNeese State University Lake Charles Louisiana USA Key Laboratory of Automotive Power Train and Electronics Hubei University of Automotive Technology Shiyan China
The increasing penetration level of renewable energy resources (RES) has introduced a significant challenge on system frequency dynamics management. Batteries with fast dynamic response are widely used to regulate fre... 详细信息
来源: 评论
Towards Fair Federated Learning via Unbiased Feature Aggregation
收藏 引用
IEEE Transactions on Dependable and Secure Computing 2025年
作者: He, Zeqing Wang, Zhibo Dong, Xiaowei Sun, Peng Ren, Ju Ren, Kui Zhejiang University State Key Laboratory of Blockchain and Data Security China Institute of Blockchain and Data Security Hangzhou310027 China Wuhan University School of Cyber Science and Engineering Wuhan430072 China Hunan University College of Computer Science and Electronic Engineering Changsha410082 China Tsinghua University Department of Computer Science and Technology Beijing100084 China Zhongguancun Laboratory Beijing100094 China
Federated learning (FL) is a distributed machine learning framework that enables multiple clients to collaboratively train models without raw data exchange. Prior studies on FL mainly focus on optimizing learning perf... 详细信息
来源: 评论
CoT-Drive: Efficient Motion Forecasting for Autonomous Driving with LLMs and Chain-of-Thought Prompting
arXiv
收藏 引用
arXiv 2025年
作者: Liao, Haicheng Kong, Hanlin Wang, Bonan Wang, Chengyue Ye, Wang He, Zhengbing Xu, Chengzhong Li, Zhenning State Key Laboratory of Internet of Things for Smart City University of Macau China Department of Computer and Information Science University of Macau China Senseable City Lab Massachusetts Institute of Technology CambridgeMA United States
Accurate motion forecasting is crucial for safe autonomous driving (AD). This study proposes CoT-Drive, a novel approach that enhances motion forecasting by leveraging large language models (LLMs) and a chain-of-thoug... 详细信息
来源: 评论
DNGaussian: Optimizing Sparse-View 3D Gaussian Radiance Fields with Global-Local Depth Normalization
DNGaussian: Optimizing Sparse-View 3D Gaussian Radiance Fiel...
收藏 引用
Conference on computer Vision and Pattern Recognition (CVPR)
作者: Jiahe Li Jiawei Zhang Xiao Bai Jin Zheng Xin Ning Jun Zhou Lin Gu State Key Laboratory of Complex & Critical Software Environment School of Computer Science and Engineering Jiangxi Research Institute Beihang University Institute of Semiconductors Chinese Academy of Sciences School of Information and Communication Technology Griffith University RIKEN AIP The University of Tokyo
Radiance fields have demonstrated impressive performance in synthesizing novel views from sparse input views, yet prevailing methods suffer from high training costs and slow inference speed. This paper introduces DNGa... 详细信息
来源: 评论