咨询与建议

限定检索结果

文献类型

  • 1,473 篇 会议
  • 1,220 篇 期刊文献
  • 8 册 图书

馆藏范围

  • 2,701 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,895 篇 工学
    • 1,465 篇 计算机科学与技术...
    • 1,180 篇 软件工程
    • 317 篇 信息与通信工程
    • 273 篇 控制科学与工程
    • 154 篇 生物工程
    • 134 篇 机械工程
    • 133 篇 电气工程
    • 121 篇 电子科学与技术(可...
    • 92 篇 光学工程
    • 87 篇 生物医学工程(可授...
    • 72 篇 仪器科学与技术
    • 69 篇 动力工程及工程热...
    • 58 篇 化学工程与技术
    • 39 篇 安全科学与工程
    • 39 篇 网络空间安全
    • 37 篇 建筑学
  • 893 篇 理学
    • 552 篇 数学
    • 184 篇 物理学
    • 172 篇 生物学
    • 151 篇 统计学(可授理学、...
    • 138 篇 系统科学
    • 69 篇 化学
  • 546 篇 管理学
    • 339 篇 管理科学与工程(可...
    • 221 篇 图书情报与档案管...
    • 110 篇 工商管理
  • 75 篇 医学
    • 65 篇 临床医学
    • 55 篇 基础医学(可授医学...
    • 40 篇 药学(可授医学、理...
  • 62 篇 法学
    • 42 篇 社会学
  • 37 篇 经济学
    • 37 篇 应用经济学
  • 17 篇 农学
  • 16 篇 教育学
  • 10 篇 文学
  • 9 篇 艺术学
  • 6 篇 军事学

主题

  • 132 篇 computer science
  • 101 篇 laboratories
  • 62 篇 semantics
  • 60 篇 wireless sensor ...
  • 49 篇 software enginee...
  • 46 篇 application soft...
  • 43 篇 software testing
  • 41 篇 optimization
  • 41 篇 software
  • 40 篇 algorithm design...
  • 39 篇 testing
  • 38 篇 computational mo...
  • 38 篇 feature extracti...
  • 36 篇 data mining
  • 34 篇 web services
  • 33 篇 educational inst...
  • 33 篇 monitoring
  • 32 篇 protocols
  • 31 篇 cloud computing
  • 29 篇 deep learning

机构

  • 507 篇 state key labora...
  • 202 篇 department of co...
  • 151 篇 department of co...
  • 118 篇 national key lab...
  • 108 篇 state key labora...
  • 84 篇 state key labora...
  • 63 篇 department of co...
  • 62 篇 shanghai key lab...
  • 61 篇 school of softwa...
  • 57 篇 state key labora...
  • 51 篇 state key labora...
  • 49 篇 university of ch...
  • 47 篇 national key lab...
  • 39 篇 tsinghua nationa...
  • 37 篇 school of artifi...
  • 33 篇 beijing key labo...
  • 30 篇 state key labora...
  • 30 篇 department of co...
  • 28 篇 department of co...
  • 27 篇 department of co...

作者

  • 35 篇 junping du
  • 34 篇 yu huiqun
  • 34 篇 li wu-jun
  • 33 篇 guihai chen
  • 32 篇 dou wanchun
  • 31 篇 fan guisheng
  • 31 篇 yingmin jia
  • 30 篇 shen furao
  • 30 篇 zhao jian
  • 30 篇 zhang lijun
  • 29 篇 ying mingsheng
  • 25 篇 yang tianbao
  • 24 篇 xu baowen
  • 23 篇 xiang-yang li
  • 23 篇 sanglu lu
  • 23 篇 chen liqiong
  • 23 篇 fashan yu
  • 21 篇 gao yang
  • 21 篇 lu sanglu
  • 21 篇 xu xiaolong

语言

  • 2,524 篇 英文
  • 90 篇 其他
  • 86 篇 中文
  • 2 篇 德文
检索条件"机构=State Key Laboratory for Novell Software Technology Department of Computer Science and Technology"
2701 条 记 录,以下是101-110 订阅
排序:
No-Reference Image Quality Assessment via Multibranch Convolutional Neural Networks
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2023年 第1期4卷 148-160页
作者: Pan, Zhaoqing Yuan, Feng Wang, Xu Xu, Long Shao, Xiao Kwong, Sam the School of Electrical and Information Engineering Tianjin University Tianjin300072 China the College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China the Key Laboratory of Solar Activity National Astronomical Observatories Chinese Academy of Sciences Beijing100012 China the School of Computer and Software Nanjing University of Information Science and Technology Nanjing210044 China the Department of Computer Science City University of Hong Kong Hong Kong
No-reference image quality assessment (NR-IQA) aims to evaluate image quality without using the original reference images. Since the early NR-IQA methods based on distortion types were only applicable to specific dist... 详细信息
来源: 评论
NfvInsight:A Framework for Automatically Deploying and Benchmarking VNF Chains
收藏 引用
Journal of computer science & technology 2022年 第3期37卷 680-698页
作者: Tian-Ni Xu Hai-Feng Sun Di Zhang Xiao-Ming Zhou Xiu-Feng Sui Sa Wang Qun Huang Yun-Gang Bao State Key Laboratory of Computer Architecture Institute of Computing TechnologyChinese Academy of SciencesBeijing 100190China University of Chinese Academy of Sciences Beijing 100049China School of Information and Electronics Beijing Institute of TechnologyBeijing 100081China Peng Cheng Laboratory Shenzhen 518055China Department of Computer Science and Technology Peking UniversityBeijing 100871China
With the advent of virtualization techniques and software-defined networking(SDN),network function virtualization(NFV)shifts network functions(NFs)from hardware implementations to software appliances,between which exi... 详细信息
来源: 评论
Differentially Private K-Means Publishing with Distributed Dimensions
Differentially Private K-Means Publishing with Distributed D...
收藏 引用
International Conference on computer Supported Cooperative Work in Design
作者: Boyu Zhu Yuan Zhang Tingting Chen Sheng Zhong Computer Science and Technology Department State Key Laboratory for Novel Software Technology Nanjing University Nanjing China Computer Science Department College of Science California State Polytechnic University Pomona USA
In this paper, we address the critical concerns related to dataset privacy in the context of k-means clustering publishing within a distributed dimension setting. By leveraging differential privacy mechanisms, we prop... 详细信息
来源: 评论
Energy-Guided Diffusion Sampling for Offline-to-Online Reinforcement Learning  41
Energy-Guided Diffusion Sampling for Offline-to-Online Reinf...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Liu, Xu-Hui Liu, Tian-Shuo Jiang, Shengyi Chen, Ruifeng Zhang, Zhilong Chen, Xinwei Yu, Yang National Key Laboratory for Novel Software Technology Nanjing University China School of Artificial Intelligence Nanjing University China Polixir Technologies China Department of Computer Science The University of Hong Kong Hong Kong
Combining offline and online reinforcement learning (RL) techniques is indeed crucial for achieving efficient and safe learning where data acquisition is expensive. Existing methods replay offline data directly in the... 详细信息
来源: 评论
CIXG: A Comprehensive Approach to Driver Gene Identification and Causal Interpretation
CIXG: A Comprehensive Approach to Driver Gene Identification...
收藏 引用
2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
作者: Liu, Yawen Chen, Yiwen Nie, Shanling Yang, Hai East China University of Science and Technology Department of Computer Science and Engineering Shanghai China Shanghai Key Laboratory of Computer Software Evaluating and Testing Shanghai China National University of Singapore Center for Continuing and Lifelong Education Singapore University of Sydney Faculty of Engineering Australia
With the ongoing advancements in science and technology and the increasing research focus on cancer-related issues, there has been a proliferation of omics-related resources for in-depth analysis and exploration. This... 详细信息
来源: 评论
Learning Order Forest for Qualitative-Attribute Data Clustering  27
Learning Order Forest for Qualitative-Attribute Data Cluster...
收藏 引用
27th European Conference on Artificial Intelligence, ECAI 2024
作者: Zhao, Mingjie Feng, Sen Zhang, Yiqun Li, Mengke Lu, Yang Cheung, Yiu-Ming School of Computer Science and Technology Guangdong University of Technology Guangzhou China Shenzhen China School of Computer Science and Software Engineering Shenzhen University Shenzhen China Fujian Key Laboratory of Sensing and Computing for Smart City School of Informatics Xiamen University China Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University China Department of Computer Science Hong Kong Baptist University Hong Kong
Clustering is a fundamental approach to understanding data patterns, wherein the intuitive Euclidean distance space is commonly adopted. However, this is not the case for implicit cluster distributions reflected by qu... 详细信息
来源: 评论
Differentiate Xp11.2 Translocation Renal Cell Carcinoma from Computed Tomography Images and Clinical Data with ResNet-18 CNN and XGBoost
收藏 引用
computer Modeling in Engineering & sciences 2023年 第7期136卷 347-362页
作者: Yanwen Lu Wenliang Ma Xiang Dong Mackenzie Brown Tong Lu Weidong Gan Department of Urology Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing210008China School of Data Science Perdana UniversitySerdang43400Malaysia State Key Laboratory for Novel Software Technology Nanjing UniversityNanjing210008China
This study aims to apply ResNet-18 convolutional neural network(CNN)and XGBoost to preoperative computed tomography(CT)images and clinical data for distinguishing Xp11.2 translocation renal cell carcinoma(Xp11.2 tRCC)... 详细信息
来源: 评论
Weighting Online Decision Transformer with Episodic Memory for Offline-to-Online Reinforcement Learning
Weighting Online Decision Transformer with Episodic Memory f...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Xiao Ma Wu-Jun Li Department of Computer Science and Technology National Key Laboratory for Novel Software Technology Nanjing University Nanjing PRC
Offline reinforcement learning (RL) has been shown to be successfully modeled as a sequence modeling problem, drawing inspiration from the success of Transformers. Offline RL is often limited by the quality of the off... 详细信息
来源: 评论
PIP: Perturbation-based Iterative Pruning for Large Language Models
arXiv
收藏 引用
arXiv 2025年
作者: Cao, Yi Xu, Wei-Jie Shen, Yucheng Shi, Weijie Chan, Chi-Min Xu, Jiajie School of Computer Science and Technology Soochow University China State Key Laboratory for Novel Software Technology Nanjing University China Department of Computer Science and Engineering The Hong Kong University of Science and Technology Hong Kong
The rapid increase in the parameter counts of Large Language Models (LLMs), reaching billions or even trillions, presents significant challenges for their practical deployment, particularly in resource-constrained env...
来源: 评论
Validity-Preserving Delta Debugging via Generator Trace Reduction
arXiv
收藏 引用
arXiv 2024年
作者: Ren, Luyao Zhang, Xing Hua, Ziyue Jiang, Yanyan He, Xiao Xiong, Yingfei Xie, Tao Key Laboratory of High Confidence Software Technologies Ministry of Education School of Computer Science Peking University Beijing China State Key Laboratory for Novel Software Technology Department of Computer Science and Technology Nanjing University China School of Computer and Communication Engineering University of Science and Technology Beijing China
Reducing test inputs that trigger bugs is crucial for efficient debugging. Delta debugging is the most popular approach for this purpose. When test inputs need to conform to certain specifications, existing delta debu... 详细信息
来源: 评论