Mobile software engineering has been a hot research topic for decades. Our fellow researchers have proposed various approaches (with over 7,000 publications for Android alone) in this field that essentially contribute...
Mobile software engineering has been a hot research topic for decades. Our fellow researchers have proposed various approaches (with over 7,000 publications for Android alone) in this field that essentially contributed to the great success of the current mobile ecosystem. Existing research efforts mainly focus on popular mobile platforms, namely Android and iOS. OpenHarmony, a newly open-sourced mobile platform, has rarely been considered, although it is the one requiring the most attention as OpenHarmony is expected to occupy one-third of the market in China (if not in the world). To fill the gap, we present to the mobile software engineering community a research roadmap for encouraging our fellow researchers to contribute promising approaches to OpenHarmony. Specifically, we start by presenting a tertiary study of mobile software engineering, attempting to understand what problems have been targeted by the mobile community and how they have been resolved. We then summarize the existing (limited) achievements of OpenHarmony and subsequently highlight the research gap between Android/iOS and OpenHarmony. This research gap eventually helps in forming the roadmap for conducting software engineering research for OpenHarmony.
Distributed Collaborative Machine Learning (DCML) has emerged in artificial intelligence-empowered edge computing environments, such as the Industrial Internet of Things (IIoT), to process tremendous data generated by...
详细信息
Distributed Collaborative Machine Learning (DCML) has emerged in artificial intelligence-empowered edge computing environments, such as the Industrial Internet of Things (IIoT), to process tremendous data generated by smart devices. However, parallel DCML frameworks require resource-constrained devices to update the entire Deep Neural Network (DNN) models and are vulnerable to reconstruction attacks. Concurrently, the serial DCML frameworks suffer from training efficiency problems due to their serial training nature. In this paper, we propose a Model Pruning-enabled Federated Split Learning framework (MP-FSL) to reduce resource consumption with a secure and efficient training scheme. Specifically, MP-FSL compresses DNN models by adaptive channel pruning and splits each compressed model into two parts that are assigned to the client and the server. Meanwhile, MP-FSL adopts a novel aggregation algorithm to aggregate the pruned heterogeneous models. We implement MP-FSL with a real FL platform to evaluate its performance. The experimental results show that MP-FSL outperforms the state-of-the-art frameworks in model accuracy by up to 1.35%, while concurrently reducing storage and computational resource consumption by up to 32.2% and 26.73%, respectively. These results demonstrate that MP-FSL is a comprehensive solution to the challenges faced by DCML, with superior performance in both reduced resource consumption and enhanced model performance.
暂无评论