咨询与建议

限定检索结果

文献类型

  • 1,491 篇 会议
  • 1,233 篇 期刊文献
  • 8 册 图书

馆藏范围

  • 2,732 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,925 篇 工学
    • 1,489 篇 计算机科学与技术...
    • 1,186 篇 软件工程
    • 325 篇 信息与通信工程
    • 291 篇 控制科学与工程
    • 154 篇 生物工程
    • 137 篇 电气工程
    • 135 篇 机械工程
    • 123 篇 电子科学与技术(可...
    • 93 篇 光学工程
    • 87 篇 生物医学工程(可授...
    • 72 篇 仪器科学与技术
    • 69 篇 动力工程及工程热...
    • 58 篇 化学工程与技术
    • 40 篇 建筑学
    • 40 篇 网络空间安全
    • 39 篇 安全科学与工程
    • 38 篇 交通运输工程
  • 895 篇 理学
    • 554 篇 数学
    • 183 篇 物理学
    • 173 篇 生物学
    • 151 篇 统计学(可授理学、...
    • 138 篇 系统科学
    • 69 篇 化学
  • 548 篇 管理学
    • 339 篇 管理科学与工程(可...
    • 223 篇 图书情报与档案管...
    • 111 篇 工商管理
  • 76 篇 医学
    • 66 篇 临床医学
    • 56 篇 基础医学(可授医学...
    • 40 篇 药学(可授医学、理...
  • 62 篇 法学
    • 42 篇 社会学
  • 37 篇 经济学
  • 17 篇 农学
  • 16 篇 教育学
  • 10 篇 文学
  • 9 篇 艺术学
  • 6 篇 军事学

主题

  • 132 篇 computer science
  • 101 篇 laboratories
  • 62 篇 semantics
  • 60 篇 wireless sensor ...
  • 51 篇 software enginee...
  • 46 篇 application soft...
  • 43 篇 software testing
  • 41 篇 optimization
  • 41 篇 software
  • 40 篇 algorithm design...
  • 40 篇 feature extracti...
  • 39 篇 testing
  • 38 篇 computational mo...
  • 36 篇 data mining
  • 34 篇 web services
  • 33 篇 educational inst...
  • 33 篇 monitoring
  • 32 篇 protocols
  • 31 篇 deep learning
  • 31 篇 cloud computing

机构

  • 509 篇 state key labora...
  • 201 篇 department of co...
  • 154 篇 department of co...
  • 119 篇 national key lab...
  • 108 篇 state key labora...
  • 84 篇 state key labora...
  • 65 篇 department of co...
  • 62 篇 shanghai key lab...
  • 61 篇 school of softwa...
  • 57 篇 state key labora...
  • 51 篇 state key labora...
  • 51 篇 university of ch...
  • 47 篇 national key lab...
  • 39 篇 tsinghua nationa...
  • 36 篇 school of artifi...
  • 33 篇 beijing key labo...
  • 30 篇 college of compu...
  • 30 篇 state key labora...
  • 30 篇 department of co...
  • 28 篇 department of co...

作者

  • 35 篇 junping du
  • 34 篇 yu huiqun
  • 34 篇 li wu-jun
  • 33 篇 guihai chen
  • 32 篇 dou wanchun
  • 31 篇 fan guisheng
  • 31 篇 zhang lijun
  • 31 篇 yingmin jia
  • 30 篇 shen furao
  • 29 篇 zhao jian
  • 29 篇 ying mingsheng
  • 25 篇 yang tianbao
  • 24 篇 xu baowen
  • 23 篇 xiang-yang li
  • 23 篇 sanglu lu
  • 23 篇 chen liqiong
  • 23 篇 fashan yu
  • 22 篇 xu xiaolong
  • 22 篇 zhang xuyun
  • 21 篇 gao yang

语言

  • 2,496 篇 英文
  • 149 篇 其他
  • 86 篇 中文
  • 2 篇 德文
检索条件"机构=State Key Laboratory for Novell Software Technology Department of Computer Science and Technology"
2732 条 记 录,以下是511-520 订阅
排序:
Practitioners’ Expectations on Log Anomaly Detection
arXiv
收藏 引用
arXiv 2024年
作者: Ma, Xiaoxue Li, Yishu Keung, Jacky Yu, Xiao Zou, Huiqi Yang, Zhen Sarro, Federica Barr, Earl T. Department of Electronic Engineering and Computer Science Hong Kong Metropolitan University Hong Kong Department of Computer Science City University of Hong Kong Hong Kong State Key Laboratory of Blockchain and Data Security Zhejiang University Hangzhou China Department of Computer Science Johns Hopkins University Baltimore United States School of Computer Science and Technology Shandong University Shandong China Department of Computer Science University College London London United Kingdom
Log anomaly detection has become a common practice for software engineers to analyze software system behavior. Despite significant research efforts in log anomaly detection over the past decade, it remains unclear wha...
来源: 评论
Modeling Inter-Intra Heterogeneity for Graph Federated Learning
arXiv
收藏 引用
arXiv 2024年
作者: Yu, Wentao Chen, Shuo Tong, Yongxin Gu, Tianlong Gong, Chen School of Computer Science and Engineering Nanjing University of Science and Technology China Center for Advanced Intelligence Project RIKEN Japan State Key Laboratory of Complex & Critical Software Environment Beihang University China Jinan University China Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
Heterogeneity is a fundamental and challenging issue in federated learning, especially for the graph data due to the complex relationships among the graph nodes. To deal with the heterogeneity, lots of existing method... 详细信息
来源: 评论
Model-Based Offline Reinforcement Learning with Adversarial Data Augmentation
arXiv
收藏 引用
arXiv 2025年
作者: Cao, Hongye Feng, Fan Huo, Jing Yang, Shangdong Fang, Meng Yang, Tianpei Gao, Yang National Key Laboratory for Novel Software Technology Nanjing University Nanjing210093 China Department of Electrical Engineering City University of Hong Kong Hong Kong School of Computer Science Nanjing University of Posts and Telecommunications Nanjing210023 China Department of Computer Science University of Liverpool LiverpoolL69 3BX United Kingdom
Model-based offline Reinforcement Learning (RL) constructs environment models from offline datasets to perform conservative policy optimization. Existing approaches focus on learning state transitions through ensemble... 详细信息
来源: 评论
Image Data Augmentation for Deep Learning: A Survey
arXiv
收藏 引用
arXiv 2022年
作者: Yang, Suorong Xiao, Weikang Zhang, Mengchen Guo, Suhan Zhao, Jian Shen, Furao State Key Laboratory for Novel Software Technology Nanjing University China Department of Computer Science and Technology Nanjing University China School of Artificial Intelligence Nanjing University China School of Electronic Science and Engineering Nanjing University China
Deep learning has achieved remarkable results in many computer vision tasks. Deep neural networks typically rely on large amounts of training data to avoid overfitting. However, labeled data for real-world application... 详细信息
来源: 评论
RandoMix: A Mixed Sample Data Augmentation Method with Multiple Mixed Modes
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Xiaoliang Shen, Furao Zhao, Jian Nie, Changhai State Key Laboratory for Novel Software Technology Nanjing University China Department of Computer Science and Technology Nanjing University China School of Artificial Intelligence Nanjing University China School of Electronic Science and Engineering Nanjing University China
Data augmentation plays a crucial role in enhancing the robustness and performance of machine learning models across various domains. In this study, we introduce a novel mixed-sample data augmentation method called Ra... 详细信息
来源: 评论
Prototype-Wise Self-Knowledge Distillation for Few-Shot Segmentation
SSRN
收藏 引用
SSRN 2023年
作者: Chen, Yadang Xu, Xinyu Wei, Chenchen Yang, Zhi-Xin School of Computer and Software Nanjing University of Information Science and Technology Nanjing210044 China Engineering Research Center of Digital Forensics Ministry of Education Nanjing University of Information Science and Technology Nanjing210044 China The State Key Laboratory of Internet of Things for Smart City Department of Electromechanical Engineering University of Macau 999078 China
Few-shot segmentation was proposed to obtain segmentation results for a image with an unseen class by referring to a few labeled samples. However, due to the limited number of samples, many few-shot segmentation model... 详细信息
来源: 评论
Sensitivity Pruner: Filter-Level Deep Neural Network Compression
SSRN
收藏 引用
SSRN 2022年
作者: Guo, Suhan Lai, Bilan Yang, Suorong Zhao, Jian Shen, Furao State Key Laboratory for Novel Software Technology Nanjing University China School of Artificial Intelligence Nanjing University China Department of Computer Science and Technology Nanjing University China School of Electronic Science and Engineering Nanjing University China
As neural networks get deeper to better higher performance, the demand for deployable models on resource-constrained devices also grows. In this work, we propose to achieve model compression using filter-level pruning... 详细信息
来源: 评论
Di-Net: Decomposed Implicit Garment Transfer Network for Digital Clothed 3d Human
SSRN
收藏 引用
SSRN 2024年
作者: Zhong, Xiaojing Su, Yukun Wu, Zhonghua Lin, Guosheng Wu, Qingyao School of Software Engineering South China University of Technology China School of Computer Science and Engineering Nanyang Technological University Singapore Key Laboratory of Big Data and Intelligent Robot Ministry of Education China Peng Cheng Laboratory China Tencent Wechat Department China SenseTime Research
3D virtual try-on tasks aim to generate realistic try-on results for full- body garments, allowing them to be observed from arbitrary perspectives. Recent methods often represent the 3D human form with a fixed topol- ... 详细信息
来源: 评论
Adversarial Purification by Consistency-aware Latent Space Optimization on Data Manifolds
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Shuhai Yang, Jiahao Luo, Hui Chen, Jie Wang, Li Liu, Feng Han, Bo Tan, Mingkui The School of Software Engineering South China University of Technology China the Pazhou Laboratory Guangzhou China The National Key Laboratory of Optical Field Manipulation Science and Technology CAS China the Institute of Optics and Electronics CAS Chengdu China the School of Electronic and Computer Engineering Peking University Beijing100871 China Peng Cheng Laboratory Shenzhen518066 China The Department of Mathematics The Department of Computer Science and Engineering University of Texas at Arlington ArlingtonTX76019 United States University of Melbourne Australia Department of Computer Science Hong Kong Baptist University Hong Kong
Deep neural networks (DNNs) are vulnerable to adversarial samples crafted by adding imperceptible perturbations to clean data, potentially leading to incorrect and dangerous predictions. Adversarial purification has b... 详细信息
来源: 评论
MindSpore Quantum: A User-Friendly, High-Performance, and AI-Compatible Quantum Computing Framework
arXiv
收藏 引用
arXiv 2024年
作者: Xu, Xusheng Cui, Jiangyu Cui, Zidong He, Runhong Li, Qingyu Li, Xiaowei Lin, Yanling Liu, Jiale Liu, Wuxin Lu, Jiale Luo, Maolin Lyu, Chufan Pan, Shijie Pavel, Mosharev Shu, Runqiu Tang, Jialiang Xu, Ruoqian Xu, Shu Yang, Kang Yu, Fan Zeng, Qingguo Zhao, Haiying Zheng, Qiang Zhou, Junyuan Zhou, Xu Zhu, Yikang Zou, Zuoheng Bayat, Abolfazl Cao, Xi Cui, Wei Li, Zhendong Long, Guilu Su, Zhaofeng Wang, Xiaoting Wang, Zizhu Wei, Shijie Wu, Re-Bing Zhang, Pan Yung, Man-Hong MindSpore Quantum Special Interest Group Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu610051 China State Key Laboratory of Computer Science Institute of Software Chinese Academy of Sciences Beijing100190 China Institute for Quantum Science and Engineering Southern University of Science and Technology Shenzhen518055 China School of Computer Science and Technology University of Science and Technology of China Hefei230027 China School of Automation Science and Engineering South China University of Technology Guangzhou510641 China Department of Physical Chemistry University of the Basque Country UPV/EHU Apartado 644 Bilbao48080 Spain School of Physics and Astronomy Sun Yat-sen University Zhuhai519082 China Key Laboratory of Quantum Physics and Photonic Quantum Information Ministry of Education University of Electronic Science and Technology of China Chengdu611731 China Department of Automation Tsinghua University Beijing100084 China Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of Chemistry Beijing Normal University Beijing100875 China Beijing Academy of Quantum Information Sciences Beijing100193 China State Key Laboratory of Low-Dimensional Quantum Physics Department of Physics Tsinghua University Beijing100084 China CAS Key Laboratory for Theoretical Physics Institute of Theoretical Physics Chinese Academy of Sciences Beijing100190 China Shenzhen International Quantum Academy Shenzhen518048 China Guangdong Provincial Key Laboratory of Quantum Science and Engineering Southern University of Science and Technology Shenzhen518055 China Shenzhen Key Laboratory of Quantum Science and Engineering Southern University of Science and Technology Shenzhen518055 China
We introduce MindSpore Quantum, a pioneering hybrid quantum-classical framework with a primary focus on the design and implementation of noisy intermediate-scale quantum (NISQ) algorithms. Leveraging the robust suppor... 详细信息
来源: 评论