咨询与建议

限定检索结果

文献类型

  • 168 篇 会议
  • 100 篇 期刊文献

馆藏范围

  • 268 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 188 篇 工学
    • 118 篇 计算机科学与技术...
    • 101 篇 软件工程
    • 33 篇 信息与通信工程
    • 32 篇 控制科学与工程
    • 31 篇 光学工程
    • 20 篇 电子科学与技术(可...
    • 20 篇 生物医学工程(可授...
    • 15 篇 生物工程
    • 14 篇 航空宇航科学与技...
    • 12 篇 机械工程
    • 11 篇 化学工程与技术
    • 9 篇 仪器科学与技术
    • 9 篇 电气工程
    • 6 篇 力学(可授工学、理...
    • 6 篇 交通运输工程
    • 4 篇 建筑学
    • 4 篇 土木工程
  • 100 篇 理学
    • 58 篇 数学
    • 43 篇 物理学
    • 16 篇 生物学
    • 10 篇 化学
    • 9 篇 统计学(可授理学、...
    • 5 篇 系统科学
    • 3 篇 地球物理学
  • 33 篇 管理学
    • 18 篇 管理科学与工程(可...
    • 16 篇 图书情报与档案管...
  • 18 篇 医学
    • 16 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 9 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 3 篇 军事学
  • 1 篇 哲学
  • 1 篇 经济学
  • 1 篇 教育学
  • 1 篇 文学

主题

  • 19 篇 image segmentati...
  • 15 篇 image processing
  • 13 篇 pattern recognit...
  • 11 篇 image edge detec...
  • 11 篇 laboratories
  • 11 篇 artificial intel...
  • 10 篇 image reconstruc...
  • 9 篇 feature extracti...
  • 8 篇 intelligent cont...
  • 6 篇 target tracking
  • 6 篇 algorithm design...
  • 6 篇 signal processin...
  • 6 篇 image recognitio...
  • 6 篇 digital signal p...
  • 6 篇 infrared imaging
  • 6 篇 wavelet transfor...
  • 5 篇 ultrasonic imagi...
  • 5 篇 very large scale...
  • 5 篇 remote sensing
  • 5 篇 biomedical imagi...

机构

  • 18 篇 state key labora...
  • 14 篇 school of artifi...
  • 10 篇 institute for pa...
  • 10 篇 university of ch...
  • 9 篇 new laboratory o...
  • 9 篇 state key labora...
  • 7 篇 national laborat...
  • 6 篇 institute of pat...
  • 6 篇 state education ...
  • 6 篇 state key labora...
  • 5 篇 university of sc...
  • 5 篇 fujian key labor...
  • 5 篇 state key labora...
  • 5 篇 school of comput...
  • 5 篇 shanghai artific...
  • 4 篇 brainnetome cent...
  • 4 篇 school of artifi...
  • 3 篇 college of elect...
  • 3 篇 department of ra...
  • 3 篇 arc lab tencent ...

作者

  • 25 篇 zhang tianxu
  • 18 篇 liu jian
  • 17 篇 tian jinwen
  • 15 篇 ding mingyue
  • 14 篇 jinwen tian
  • 13 篇 jian liu
  • 11 篇 tianxu zhang
  • 10 篇 cai chao
  • 10 篇 mingyue ding
  • 8 篇 sang nong
  • 7 篇 liang wang
  • 7 篇 jin-wen tian
  • 7 篇 tian jin-wen
  • 6 篇 wang da-han
  • 6 篇 li dehua
  • 5 篇 xin yang
  • 5 篇 ming yuchi
  • 5 篇 zhang xu-yao
  • 4 篇 张天序
  • 4 篇 jie ma

语言

  • 245 篇 英文
  • 13 篇 中文
  • 10 篇 其他
检索条件"机构=State Key Laboratory for Pattern Recognition and Intelligence Control"
268 条 记 录,以下是31-40 订阅
排序:
Biologically inspired visual computing:the state of the art
收藏 引用
Frontiers of Computer Science 2021年 第1期15卷 1-15页
作者: Wangli HAO Ian Max ANDOLINA Wei WANG Zhaoxiang ZHANG Research Center for Research on Intelligent Perception and Computing Beijing 100190China National Laboratory of Pattern Recognition CASIABeijing 100190China CAS Center for Excellence in Brain Science and Intelligence Technology CASBeijing 100190China University of Chinese Academy of Sciences Beijing 100190China State Key Laboratory of Neuroscience Shanghai 200031China Institute of Neuroscience Chinese Academy of SciencesShanghai 200031China
Visual information is highly advantageous for the evolutionary success of almost all *** information is likewise critical for many computing tasks,and visual computing has achieved tremendous successes in numerous app... 详细信息
来源: 评论
Survey on AI-Generated Media Detection: From Non-MLLM to MLLM
arXiv
收藏 引用
arXiv 2025年
作者: Zou, Yueying Li, Peipei Li, Zekun Huang, Huaibo Cui, Xing Liu, Xuannan Zhang, Chenghanyu He, Ran School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China School of Science Beijing University of Posts and Telecommunications Beijing100876 China School of Computer Science University of California Santa Barbara United States State Key Laboratory of Multimodal Artificial Intelligence Systems CASIA New Laboratory of Pattern Recognition CASIA School of Artificial Intelligence University of Chinese Academy of Sciences Beijing100190 China
The proliferation of AI-generated media poses significant challenges to information authenticity and social trust, making reliable detection methods highly demanded. Methods for detecting AI-generated media have evolv... 详细信息
来源: 评论
Reprogramming pretrained target-specific diffusion models for dual-target drug design  24
Reprogramming pretrained target-specific diffusion models fo...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Xiangxin Zhou Jiaqi Guan Yijia Zhang Xingang Peng Liang Wang Jianzhu Ma School of Artificial Intelligence University of Chinese Academy of Sciences and New Laboratory of Pattern Recognition (NLPR) State Key Laboratory of Multimodal Artificial Intelligence Systems (MAIS) Institute of Automation Chinese Academy of Sciences (CASIA) Department of Computer Science University of Illinois Urbana-Champaign Department of Electronic Engineering Tsinghua University Institute for Artificial Intelligence Peking University Department of Electronic Engineering Tsinghua University and Institute for AI Industry Research Tsinghua University
Dual-target therapeutic strategies have become a compelling approach and attracted significant attention due to various benefits, such as their potential in overcoming drug resistance in cancer therapy. Considering th...
来源: 评论
Enhancing Sound Source Localization via False Negative Elimination
arXiv
收藏 引用
arXiv 2024年
作者: Song, Zengjie Zhang, Jiangshe Wang, Yuxi Fan, Junsong Zhang, Zhaoxiang School of Mathematics and Statistics Xi'an Jiaotong University Xi'An710049 China Center for Artificial Intelligence and Robotics Hong Kong Institute of Science & Innovation Chinese Academy of Sciences Hong Kong New Laboratory of Pattern Recognition State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China
Sound source localization aims to localize objects emitting the sound in visual scenes. Recent works obtaining impressive results typically rely on contrastive learning. However, the common practice of randomly sampli... 详细信息
来源: 评论
DeSRA: Detect and Delete the Artifacts of GAN-based Real-World Super-Resolution Models
arXiv
收藏 引用
arXiv 2023年
作者: Xie, Liangbin Wang, Xintao Chen, Xiangyu Li, Gen Shan, Ying Zhou, Jiantao Dong, Chao State Key Laboratory of Internet of Things for Smart City University of Macau China Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China ARC Lab Tencent PCG China Shanghai Artificial Intelligence Laboratory China Platform Technologies China
Image super-resolution (SR) with generative adversarial networks (GAN) has achieved great success in restoring realistic details. However, it is notorious that GAN-based SR models will inevitably produce unpleasant an... 详细信息
来源: 评论
Modeling Inter-Intra Heterogeneity for Graph Federated Learning
arXiv
收藏 引用
arXiv 2024年
作者: Yu, Wentao Chen, Shuo Tong, Yongxin Gu, Tianlong Gong, Chen School of Computer Science and Engineering Nanjing University of Science and Technology China Center for Advanced Intelligence Project RIKEN Japan State Key Laboratory of Complex & Critical Software Environment Beihang University China Jinan University China Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
Heterogeneity is a fundamental and challenging issue in federated learning, especially for the graph data due to the complex relationships among the graph nodes. To deal with the heterogeneity, lots of existing method... 详细信息
来源: 评论
Distinguishing Computer-Generated Images from Natural Images Using Channel and Pixel Correlation
收藏 引用
Journal of Computer Science & Technology 2020年 第3期35卷 592-602页
作者: Rui-Song Zhang Wei-Ze Quan Lu-Bin Fan Li-Ming Hu Dong-Ming Yan National Laboratory of Pattern Recognition Institute of AutomationChinese Academy of SciencesBeijing 100190China School of Artificial Intelligence University of Chinese Academy of SciencesBeijing 100049China Alibaba Group Hangzhou 310023China State Key Laboratory of Hydro-Science and Engineering Tsinghua UniversityBeijing 100084China
With the recent tremendous advances of computer graphics rendering and image editing technologies,computergenerated fake images,which in general do not reflect what happens in the reality,can now easily deceive the in... 详细信息
来源: 评论
Modeling Inter-Intra Heterogeneity for Graph Federated Learning  39
Modeling Inter-Intra Heterogeneity for Graph Federated Learn...
收藏 引用
39th Annual AAAI Conference on Artificial intelligence, AAAI 2025
作者: Yu, Wentao Chen, Shuo Tong, Yongxin Gu, Tianlong Gong, Chen School of Computer Science and Engineering Nanjing University of Science and Technology China Center for Advanced Intelligence Project RIKEN Japan State Key Laboratory of Complex & Critical Software Environment Beihang University China Engineering Research Center of Trustworthy AI Ministry of Education Jinan University China Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
Heterogeneity is a fundamental and challenging issue in federated learning, especially for the graph data due to the complex relationships among the graph nodes. To deal with the heterogeneity, lots of existing method... 详细信息
来源: 评论
Pulling Target to Source: A New Perspective on Domain Adaptive Semantic Segmentation
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Haochen Shen, Yujun Fei, Jingjing Li, Wei Wu, Liwei Wang, Yuxi Zhang, Zhaoxiang New Laboratory of Pattern Recognition State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China Centre for Artificial Intelligence and Robotics Hong Kong Institute of Science & Innovation Chinese Academy of Sciences Hong Kong Chinese University of Hong Kong Hong Kong SenseTime Research Beijing China
Domain-adaptive semantic segmentation aims to transfer knowledge from a labeled source domain to an unlabeled target domain. However, existing methods primarily focus on directly learning categorically discriminative ... 详细信息
来源: 评论
Activating More Pixels in Image Super-Resolution Transformer
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Xiangyu Wang, Xintao Zhou, Jiantao Qiao, Yu Dong, Chao State Key Laboratory of Internet of Things for Smart City University of Macau China Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China Shanghai Artificial Intelligence Laboratory China ARC Lab Tencent PCG China
Transformer-based methods have shown impressive performance in low-level vision tasks, such as image super-resolution. However, we find that these networks can only utilize a limited spatial range of input information... 详细信息
来源: 评论