Photo-assisted electrocatalysis provides an effective approach to remarkably improve the performance of electrocatalytic reactions in seawater. However, the application of this technology requires the catalysts to exh...
详细信息
Calcium fluoride nanoparticles with various amounts of erbium ion dopants were prepared by CTAB/C_4 H_9OH/C_7H_(16)/H_2O reverse micro-emulsion *** nanoparticles were studied by X-ray diffraction(XRD),transmission ele...
详细信息
Calcium fluoride nanoparticles with various amounts of erbium ion dopants were prepared by CTAB/C_4 H_9OH/C_7H_(16)/H_2O reverse micro-emulsion *** nanoparticles were studied by X-ray diffraction(XRD),transmission electron microscopy(TEM),fourier transform infrared spectroscopy(FTIR),absorption and fluorescence *** XRD patterns indicate a typical cubic fluorite structure and no other *** results show the synthesized particles having uniform grain size and without *** spectra reveal that there are some amounts of-OH,NO_3^-and other organic functional groups on the particle surfaces before the annealing *** absorption peaks and bands are present in the absorption spectra,corresponding to the rich energy levels of erbium *** Red-Shift of absorption bands and Blue-Shift of fluorescence peaks can be attributed to the weakened energy level split as a result of the decrease in crystal field strength.
Chirality is a unique phenomenon in nature. Chiral interactions play an important role in biological and physiological process- es, which provides much inspiration for scientists to develop cbiral materials. As a brea...
详细信息
Chirality is a unique phenomenon in nature. Chiral interactions play an important role in biological and physiological process- es, which provides much inspiration for scientists to develop cbiral materials. As a breakthrough from traditional materials, bi- ointerface materials based on chiral polymers have attracted increasing interest over the past few years. Such materials ele- gantly combine the advantages of chiral surfaces and traditional polymers, and provide a novel solution not only for the inves- tigation of chiral interaction mechanisms but also for the design of biomaterials with diverse applications, such as in tissue en- gineering and biocompatible materials, bioregulation, chiral separation and chiral sensors. Herein, we summarize recent ad- vances in the study of chiral effects and applications of chiral polymer-based biointerface materials, and also present some challenges and perspectives.
We report a giant elastocaloric effect in Sc-doped TiNi shape memory alloys, demonstrating their potential for solid-state cooling applications. The solution-treated (Ti49.2Ni50.8)99.8Sc0.2 alloy achieves a high entro...
详细信息
An in-situ consolidation method was developed and optimized to successfully fabricate alumina ceramics using pre-gelling starch. Our results showed that the obtained ceramics have more homogeneous microstructure, high...
详细信息
An in-situ consolidation method was developed and optimized to successfully fabricate alumina ceramics using pre-gelling starch. Our results showed that the obtained ceramics have more homogeneous microstructure, higher density, higher flexural strength, and favorable biocompatibility compared to the regular one. During the process, cornstarch granules swelled and deformed but no fracture was observed. After the cornstarch granules bursted, alumina particles were suspended uniformly in the three-dimensional network structure to generate a much smoother surface. Below 0.5 wt% higher cornstarch content increased the flexural strength of prepared ceramics, while above 0.5 wt% the mechanical properties were compromised. Therefore the cornstarch content of 0.5% was the optimal concentration to achieve the highest mechanical strength of the prepared ceramics, with a measured flexural strength of 341 MPa, and a relative density of 96.01%.
The second near-infrared (NIR-II) window is widely acknowledged for its excellent potential in in vivo fluorescence imaging. Currently, NIR-II fluorescence imaging predominantly operates within the 900-1880 nm spectra...
Two novel non-fullerene small molecule acceptors were prepared with the conjugated backbone of 5 H-fluoreno[3, 2-b:6, 7-b’] dithiophene carrying the electron deficient unit of dicyanomethylene indanone(DICTFDT) and r...
详细信息
Two novel non-fullerene small molecule acceptors were prepared with the conjugated backbone of 5 H-fluoreno[3, 2-b:6, 7-b’] dithiophene carrying the electron deficient unit of dicyanomethylene indanone(DICTFDT) and rhodanine(TFDTBR), respectively. The two acceptors exhibited excellent thermal stability and strong absorption in the visible region. The LUMO level is estimated to be at-3.89 eV for DICTFDT and-3.77 eV for TFDTBR. When utilized as the acceptor in bulk heterojunction polymer solar cells with the polymer donor of PBT7-Th, the optimized maximum power conversion efficiency of 5.12% and 3.95% was obtained for the device with DICTFDT and TFDTBR, respectively. The research demonstrates that 5 H-fluoreno[3, 2-b:6, 7-b’] dithiophene can be an appealing candidate for constructing small molecular electron acceptor towards efficient polymer:non-fullerene bulk heterojunction solar cells.
Solid-state electrolytes (SSEs) play a crucial role in the operation of all-solid-state lithium metal batteries (ASSLMBs). Among them, sulfide SSEs have attracted particular attention due to their high ionic conductiv...
详细信息
With the development of artificial intelligence and human-machine interaction technology, achieving all-nanofiber self-powered electronic skin (e-skin) with excellent sensing performance is still a challenge. In this ...
详细信息
By replacing hexyl chains in poly(3-hexylthiophene)(P3HT)with 2-propoxyethyls,four poly(3-(2-propoxyethyl)thiophene)(P3POET)homopolymers with comparable polydispersity indexes(PDI)and regioregularities were prepared h...
详细信息
By replacing hexyl chains in poly(3-hexylthiophene)(P3HT)with 2-propoxyethyls,four poly(3-(2-propoxyethyl)thiophene)(P3POET)homopolymers with comparable polydispersity indexes(PDI)and regioregularities were prepared herein in addition with step increment of about 7 kDa on numberaverage molecular weight(M_(n))from around 11 to 32 kDa(accordingly denoted as P11k,P18k,P25k,and P32k).When doped in film by FeCl_(3)at the optimized conditions,the maximum power factor(PF_(max))increases greatly from 4.3μW·m^(-1)·K^(-2)for P11k to 8.8μW·m^(-1)·K^(-2)for P18k,and further to 9.7μW·m^(-1)·K^(-2)for P25k,followed by a slight decrease to 9.2μW·m^(-1)·K^(-2)for *** close Seebeck coefficients(S)at PF_(max)are observed in these doped polymer films due to their consistent frontier orbital energy levels and Fermi *** main contribution to this PF_(max)evolution thus comes from the corresponding conductivities(σ).Theσvariation of the doped films can be rationally correlated with their microstructure evolution.
暂无评论