To address the serious capacity fading in lithium–sulfur batteries, a 3D ferroconcrete‐like aminated carbon nanotubes network with polyaniline coating as an effective sulfur host to contain polysulfide dissolution i...
详细信息
To address the serious capacity fading in lithium–sulfur batteries, a 3D ferroconcrete‐like aminated carbon nanotubes network with polyaniline coating as an effective sulfur host to contain polysulfide dissolution is presented here. In this composite, the cross‐linked aminated carbon nanotubes framework provides a fast charge transport pathway and enhancement in the reaction kinetics of the active material to greatly improve the rate capability and sulfur utilization. The ethylenediamine moieties provide strong adhesion of polar discharge products to nonpolar carbon surfaces and thus efficiently prevent polysulfide dissolution to improve the cycle stability, confirmed by density functional theory calculations. The outside polyaniline layers structurally restrain polysulfides to prevent the shuttle effect and active material loss. Benefiting from these advantages, the synthesized composite exhibits a high initial capacity of 1215 mAh g −1 and a capacity of 975 mAh g −1 after 200 cycles at 0.2 C. Even after 200 cycles at 0.5 C, a capacity of 735 mAh g −1 can be maintained, among the best performance reported. The strategy in this work can shed some light on modifying nonpolar carbon surfaces via the amination process to chemically attach sulfur species for high‐performance lithium–sulfur batteries.
The auxiliary device was designed for household gas stoves. It has simple structure, intelligent automatic control of water supply, heat preservation, circulation and other functions. By using the waste heat of gas fo...
The auxiliary device was designed for household gas stoves. It has simple structure, intelligent automatic control of water supply, heat preservation, circulation and other functions. By using the waste heat of gas for 30 minutes, the 20L water can be increased by 20 degrees Celsius. The utilization rate of natural gas can be increased by 10%. In 24 hours, the water temperature in the heat preservation water tank decreases below 18 degrees Celsius, which can make the continuous utilization of waste heat storage of gas. After long-term operation and testing, the thermal cycle system did not fail. It is in line with the development direction of energy saving and environmental protection in the world.
In this paper, the precipitation of β-Mg17Al12 in aging process of Mg-9%Al (mass fraction) alloy was studied using a diffuse-interface phase field model. In the model, the precipitate phase and the matrix are disting...
In this paper, the precipitation of β-Mg17Al12 in aging process of Mg-9%Al (mass fraction) alloy was studied using a diffuse-interface phase field model. In the model, the precipitate phase and the matrix are distinguished by a structural order parameter, and the interface region is assumed to be a mixture of the precipitate phase and the matrix. The mixture composition was calculated using a weighted average method. Two techniques of approximation for the chemical free energy of precipitate phase and matrix were employed, where the variation characteristics of the free energy with the mole fraction of solute were included. In the simulation, the temperature and diffusion mobility coefficient were assumed to be constant. The effects of the solution approximations on the morphology evolution and growth kinetics of the precipitate were discussed. The effects of the interface mobility coefficient on the interface growth kinetics were examined, and the effects of the interface anisotropy between the precipitate phase and the matrix on the morphology of the precipitate were also discussed. It is demonstrated that the solution approximation taking into account the interaction between atoms for a binary system provides a good description for the chemical free energy. The simulation results showed that the precipitate phase growing from a supersaturated solid solution has a plate-like shape, which is in agreement with experimental observations. The growth kinetics of the precipitate phase is significantly influenced by the interface mobility coefficient.
暂无评论