Magnetic particles have numerous applications in biotechnology and biomedicine. In this paper we reviewed the synthesis, surface modification and some applications of magnetic particles with focus on their synthesis a...
详细信息
Magnetic particles have numerous applications in biotechnology and biomedicine. In this paper we reviewed the synthesis, surface modification and some applications of magnetic particles with focus on their synthesis and surface modification. Various methods have been developed for the production of magnetic particles (magnetic nanoparticles and magnetic composite particles). For future application magnetic particles must be modified to obtain stability and surface functional groups. Finally, the application of magnetic particles in magnetic separation, drug delivery, hyperthermia, and magnetic resonance imaging are discussed.
A kind of output-feedback networked control system was addressed to overcome the defect of feedback lag introduced by the network usage in the networked control system. By introducing a plant model and a buffer into t...
详细信息
A kind of output-feedback networked control system was addressed to overcome the defect of feedback lag introduced by the network usage in the networked control system. By introducing a plant model and a buffer into this system, when feedback was available, this system could compute the control output and update the plant model with the plant output, otherwise, compute the control output based on the plant model output instead of plant output. On the condition that the plant was SISO and the error between plant and model existed, the necessary and sufficient condition for closed-loop stability of this system was derived. Simulation indicates that the range of model error within which this system is stable is easy to be derived by using this necessary and sufficient condition.
Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The p...
详细信息
Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The physicochemical properties of the Sb-SnO2 coating were markedly influenced by different amounts of Sb dopant. The electrodes, which contained 5% Sb dopant in the coating, presented a much more homogenous surface and much smaller mud-cracks, compared with Ti/Sb-SnO2 electrodes containing 10% or 15% Sb dopant, which exibited larger mud cracks and pores on the surface. However, the main microstructure remained unchanged with the addition of the Sb dopant. No new crystal phase was observed by X-ray diffraction (XRD). The electrochemical oxidation of 4-chlorophenol on the Ti/SnO2 electrode with 5% Sb dopant was inclined to electrochemical combustion; while for those containing more Sb dopant, intermediate species were accumulated. The electrodes with 5% Sb dopant showed the highest efficiency in the bulk electrolysis of 4-chlorophenol at a current density of 20 mA/cm^2 for 180 min; and the removal rates of 4-chlorophenol and COD were 51.0% and 48.9%, respectively.
This note concerns the delay-dependent robust stability analysis for uncertain singular time-delay systems. The parameter uncertainty is assumed to be norm-bounded and possibly time-varying, while the time delay consi...
This note concerns the delay-dependent robust stability analysis for uncertain singular time-delay systems. The parameter uncertainty is assumed to be norm-bounded and possibly time-varying, while the time delay considered here is assumed to be constant but unknown. By using a new Lyapunov-krasovskii functional which splits the whole delay interval into two subintervals and defines a different energy function on each subinterval, some delay-dependent conditions are presented for the singular time-delay system to be regular, impulse free and robustly stable. The obtained delay-dependent criteria are effective and less conservative than previous ones, which are illustrated by numerical examples.
This note is concerned with the absolute stability analysis for time-delay Lurie control systems with nonlinearity located in an infinite sector and finite one. By using a new Lyapunov-Krasovskii functional that split...
详细信息
This note is concerned with the absolute stability analysis for time-delay Lurie control systems with nonlinearity located in an infinite sector and finite one. By using a new Lyapunov-Krasovskii functional that splits the whole delay interval into two subintervals and defines a different energy function on each subinterval and introducing some free-weighting matrices, some new delay-dependent robustly absolute stability criteria are presented in terms of strict linear matrix inequalities (LMIs). The obtained delay-dependent criteria are less conservative than previous ones, as are illustrated by numerical examples.
A magnetically rotational reactor (MRR) has been developed and used in absorbing benzene emissions. The MRR has a permanent magnet core and uses magnetic ionic liquid [bmim]FeCl4 as absorbent. Benzene emissions were...
详细信息
A magnetically rotational reactor (MRR) has been developed and used in absorbing benzene emissions. The MRR has a permanent magnet core and uses magnetic ionic liquid [bmim]FeCl4 as absorbent. Benzene emissions were carried by N2 into the MRR and were absorbed by the magnetic ionic liquid. The rotation of the permanent magnet core provided impetus for the agitation of the magnetic ionic liquid, enhancing mass transfer and making benzene better dispersed in the absorbent. 0.68 g benzene emissions could be absorbed by a gram of [bmim]FeCl4, 0.27 and 0.40 g/g higher than that by [bmim]PF6 and [bmim]BF4, respectively. The absorption rate increased with increasing rotation rate of the permanent magnet.
暂无评论