咨询与建议

限定检索结果

文献类型

  • 80 篇 期刊文献
  • 48 篇 会议

馆藏范围

  • 128 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 90 篇 工学
    • 55 篇 计算机科学与技术...
    • 45 篇 软件工程
    • 15 篇 信息与通信工程
    • 14 篇 机械工程
    • 14 篇 电气工程
    • 11 篇 生物医学工程(可授...
    • 11 篇 生物工程
    • 10 篇 电子科学与技术(可...
    • 10 篇 控制科学与工程
    • 7 篇 光学工程
    • 7 篇 交通运输工程
    • 6 篇 安全科学与工程
    • 5 篇 仪器科学与技术
    • 4 篇 建筑学
    • 4 篇 土木工程
    • 4 篇 化学工程与技术
  • 46 篇 理学
    • 16 篇 物理学
    • 16 篇 生物学
    • 15 篇 数学
    • 6 篇 统计学(可授理学、...
    • 5 篇 化学
    • 3 篇 系统科学
  • 28 篇 管理学
    • 23 篇 管理科学与工程(可...
    • 9 篇 工商管理
    • 8 篇 图书情报与档案管...
  • 18 篇 医学
    • 18 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 6 篇 药学(可授医学、理...
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 教育学

主题

  • 5 篇 data mining
  • 4 篇 anomaly detectio...
  • 4 篇 training
  • 3 篇 visual fatigue
  • 3 篇 software reliabi...
  • 3 篇 semantics
  • 2 篇 computer
  • 2 篇 motion estimatio...
  • 2 篇 modeling
  • 2 篇 deep learning
  • 2 篇 magnetic resonan...
  • 2 篇 reliability engi...
  • 2 篇 three-dimensiona...
  • 2 篇 manuals
  • 2 篇 neural networks
  • 2 篇 cameras
  • 2 篇 rats
  • 2 篇 monitoring
  • 2 篇 real-time system...
  • 2 篇 visualization

机构

  • 18 篇 beijing key labo...
  • 14 篇 beijing key lab ...
  • 10 篇 state key labora...
  • 9 篇 haihe laboratory...
  • 9 篇 nankai universit...
  • 9 篇 university of ch...
  • 9 篇 tianjin key labo...
  • 8 篇 school of comput...
  • 7 篇 tsinghua univers...
  • 7 篇 state key labora...
  • 6 篇 zhongguancun lab...
  • 4 篇 school of comput...
  • 4 篇 beijing national...
  • 4 篇 tianjin key labo...
  • 4 篇 haihe laboratory...
  • 4 篇 college of infor...
  • 4 篇 tsinghua univers...
  • 3 篇 school of comput...
  • 3 篇 school of comput...
  • 3 篇 pengcheng labora...

作者

  • 11 篇 hongan wang
  • 10 篇 wang hongan
  • 8 篇 feng tian
  • 7 篇 wang danli
  • 6 篇 yang xinpan
  • 5 篇 sun yongqian
  • 5 篇 zhang shenglin
  • 5 篇 pei dan
  • 5 篇 hu haichen
  • 5 篇 guozhong dai
  • 4 篇 danli wang
  • 4 篇 yue kang
  • 4 篇 xinpan yang
  • 4 篇 ma cuixia
  • 4 篇 tian feng
  • 4 篇 jin huang
  • 3 篇 xiong xiao
  • 3 篇 lai yu-kun
  • 3 篇 liu yong-jin
  • 3 篇 yumeng liu

语言

  • 116 篇 英文
  • 8 篇 其他
  • 5 篇 中文
检索条件"机构=State Key Laboratory of Computer Science and Beijing Key Lab of Human-Computer Interaction"
128 条 记 录,以下是81-90 订阅
排序:
Segment-Based Trajectory Prediction and Risk Assessment for RSU-assisted CAVs at Signalized Intersections
IEEE Transactions on Intelligent Vehicles
收藏 引用
IEEE Transactions on Intelligent Vehicles 2024年 1-19页
作者: Cao, Yue Shangguan, Wei Visser, Arnoud Chen, Junjie Chai, Linguo Cai, Baigen School of Automation and Intelligence Beijing Jiaotong University Beijing China School of Automation and Intelligence and State Key Laboratory of Rail Traffic Control and Safety Beijing Jiaotong University Beijing China Intelligent Robotics and Computer Vision Lab of the Informatics Institute Faculty of Science University of Amsterdam The Netherlands
Detecting surrounding situations and reacting accordingly to avoid collisions remains a challenging task for autonomous driving. This task requires predicting the trajectories of surrounding agents and assessing the p... 详细信息
来源: 评论
Richelieu: Self-Evolving LLM-Based Agents for AI Diplomacy
arXiv
收藏 引用
arXiv 2024年
作者: Guan, Zhenyu Kong, Xiangyu Zhong, Fangwei Wang, Yizhou Institute for Artificial Intelligence Peking University Beijing China Computer School Beijing Information Science & Technology University Beijing China School of Artificial Intelligence Beijing Normal University Beijing China Center on Frontiers of Computing Studies School of Computer Science Nat’l Eng. Research Center of Visual Technology State Key Lab of General Artificial Intelligence Peking University Beijing China State Key Laboratory of General Artificial Intelligence BIGAI Beijing China
Diplomacy is one of the most sophisticated activities in human society, involving complex interactions among multiple parties that require skills in social reasoning, negotiation, and long-term strategic planning. Pre... 详细信息
来源: 评论
Multi-Grained Multimodal interaction Network for Entity Linking
arXiv
收藏 引用
arXiv 2023年
作者: Luo, Pengfei Xu, Tong Wu, Shiwei Zhu, Chen Xu, Linli Chen, Enhong School of Computer Science and Technology University of Science and Technology of China State Key Laboratory of Cognitive Intelligence Anhui Hefei China School of Data Science University of Science and Technology of China State Key Laboratory of Cognitive Intelligence Anhui Hefei China Career Science Lab BOSS Zhipin School of Management University of Science and Technology of China Beijing China
Multimodal entity linking (MEL) task, which aims at resolving ambiguous mentions to a multimodal knowledge graph, has attracted wide attention in recent years. Though large efforts have been made to explore the comple... 详细信息
来源: 评论
Confidence-oriented Contrastive Graph Clustering
Confidence-oriented Contrastive Graph Clustering
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Yan-Di Huang Guang-Yu Zhang Dong Huang Chang-Dong Wang Yang Liu Enbo Huang College of Mathematics and Informatics South China Agricultural University Guangzhou China School of Computer Science and Engineering Sun Yat-Sen University Guangdong Provincial Key Laboratory of Intellectual Property and Big Data Guangzhou China School of Computer Science and Engineering Sun Yat-Sen University Guangzhou China Guangxi Key Lab of Human-Machine Interaction and Intelligent Decision Nanning Normal University Nanning China
Contrastive clustering has recently been an emerging topic in deep unsupervised learning. Nevertheless, the previous works mostly adopt the stochastic data augmentations, which easily leads to the semantic drift probl... 详细信息
来源: 评论
A Comprehensive Survey of Action Quality Assessment: Method and Benchmark
arXiv
收藏 引用
arXiv 2024年
作者: Zhou, Kanglei Cai, Ruizhi Wang, Liyuan Shum, Hubert P.H. Liang, Xiaohui State Key Laboratory of Virtual Reality Technology and Systems Beihang University Beijing China The Department of Computer Science and Technology Institute for AI BNRist Center THBI Lab Tsinghua-Bosch Joint Center for ML Tsinghua University Beijing100190 China The Department of Computer Science Durham University DurhamDH1 3LE United Kingdom The State Key Laboratory of Virtual Reality Technology and Systems Beihang University Beijing China Zhongguancun Laboratory Beijing China
Action Quality Assessment (AQA) quantitatively evaluates the quality of human actions, providing automated assessments that reduce biases in human judgment. Its applications span domains such as sports analysis, skill...
来源: 评论
Enhanced Fine-Tuning of Lightweight Domain-Specific Q&A Model Based on Large Language Models
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Shenglin Zhu, Pengtian Ma, Minghua Wang, Jiagang Sun, Yongqian Li, Dongwen Wang, Jingyu Guo, Qianying Hua, Xiaolei Zhu, Lin Pei, Dan Nankai University China Microsoft United States Tsinghua University China China Mobile Research Institute China Haihe Laboratory of Information Technology Application Innovation China Tianjin Key Laboratory of Software Experience and Human Computer Interaction China Beijing National Research Center for Information Science and Technology China
Large language models (LLMs) excel at general question-answering (Q&A) but often fall short in specialized domains due to a lack of domain-specific knowledge. Commercial companies face the dual challenges of priva... 详细信息
来源: 评论
Learning to predict explainable plots for neural story generation
arXiv
收藏 引用
arXiv 2019年
作者: Chen, Gang Liu, Yang Luan, Huanbo Zhang, Meng Liu, Qun Sun, Maosong Institute for Artificial Intelligence State Key Laboratory of Intelligent Technology and Systems Department of Computer Science and Technology Tsinghua University Beijing China Beijing National Research Center for Information Science and Technology Noah's Ark Lab Paris Huawei Technologies Ltd
Story generation is an important natural language processing task that aims to generate coherent stories automatically. While the use of neural networks has proven effective in improving story generation, how to learn... 详细信息
来源: 评论
Rethinking natural adversarial examples for classification models
arXiv
收藏 引用
arXiv 2021年
作者: Li, Xiao Li, Jianmin Dai, Ting Shi, Jie Zhu, Jun Hu, Xiaolin Beijing National Research Center for Information Science and Technology State Key Laboratory of Intelligent Technology and Systems Tsinghua University Beijing100084 China Department of Computer Science and Technology Tsinghua University Beijing100084 China Trustworthy AI Lab of Shield Lab at Huawei Singapore Research Center Singapore
Recently, it was found that many real-world examples without intentional modifications can fool machine learning models, and such examples are called "natural adversarial examples". ImageNet-A is a famous da... 详细信息
来源: 评论
Deep ranking: Triplet MatchNet for music metric learning
Deep ranking: Triplet MatchNet for music metric learning
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Rui Lu Kailun Wu Zhiyao Duan Changshui Zhang Department of Automation Tsinghua University State Key Lab of Intelligent Technologies and Systems Tsinghua National Laboratory for Information Science and Technology (TNList) Beijing China Department of Electrical and Computer Engineering University of Rochester NY USA
Metric learning for music is an important problem for many music information retrieval (MIR) applications such as music generation, analysis, retrieval, classification and recommendation. Traditional music metrics are... 详细信息
来源: 评论
P-31: Visual Fatigue Assessment and Modeling Based on ECG and EOG Caused by 2D and 3D Displays
收藏 引用
SID Symposium Digest of Technical Papers 2016年 第1期47卷
作者: Xinpan Yang Danli Wang Haichen Hu Kang Yue Beijing Key Lab of Human-Computer Interaction Institute of Software Chinese Academy of Sciences Beijing China State Key Laboratory of Computer Institute of Software Chinese Academy of Sciences Beijing China
Three-dimensional (3D) displays become more and more popular in many fields, because they can provide amazing visual effects. However, visual fatigue as one of the critical factors has seriously impeded the wide range... 详细信息
来源: 评论