版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
To address the critical challenges of unmanned aerial vehicle infrared detection including dense occlusion, low foreground–background contrast, and complex background interference, we propose an enhanced Infrared_YOLO architecture based on 'You Only Look Once version 11' (YOLOv11) framework. The architecture incorporates a feature fusion pyramid network that synergistically combines focused and diffused semantic propagation to enhance multi-scale feature integration while boosting backbone throughput. A dynamic feature enhancement module employs local multi-path cooperative attention to dynamically optimize both offset fields and modulation masks in deformable convolutions, significantly improving geometric deformation modeling. An improved non-maximum suppression algorithm coupled with similarity-preserving knowledge distillation effectively reduces redundant detections and false positives while strengthening the model's generalization capabilities across diverse operational scenarios. Experimental results demonstrate that the Infrared_YOLO algorithm exhibits consistently high generalization performance and robustness across multiple heterogeneous datasets compared to baseline models. The method exhibits superior robustness and generalization capabilities, providing an effective technical solution for post-disaster rescue, traffic monitoring, and urban planning applications.
电话和邮箱必须正确填写,我们会与您联系确认。
版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
暂无评论