咨询与建议

限定检索结果

文献类型

  • 1,774 篇 期刊文献
  • 605 篇 会议
  • 2 册 图书

馆藏范围

  • 2,381 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,523 篇 理学
    • 1,130 篇 物理学
    • 319 篇 数学
    • 119 篇 化学
    • 117 篇 生物学
    • 93 篇 地球物理学
    • 93 篇 统计学(可授理学、...
    • 31 篇 系统科学
  • 1,290 篇 工学
    • 592 篇 计算机科学与技术...
    • 446 篇 软件工程
    • 250 篇 核科学与技术
    • 163 篇 电子科学与技术(可...
    • 146 篇 信息与通信工程
    • 135 篇 光学工程
    • 129 篇 电气工程
    • 98 篇 生物工程
    • 94 篇 化学工程与技术
    • 93 篇 控制科学与工程
    • 87 篇 仪器科学与技术
    • 62 篇 生物医学工程(可授...
    • 60 篇 机械工程
    • 56 篇 材料科学与工程(可...
    • 51 篇 冶金工程
    • 44 篇 力学(可授工学、理...
    • 43 篇 动力工程及工程热...
    • 34 篇 航空宇航科学与技...
  • 185 篇 管理学
    • 119 篇 管理科学与工程(可...
    • 69 篇 图书情报与档案管...
    • 40 篇 工商管理
  • 56 篇 医学
    • 44 篇 临床医学
    • 40 篇 基础医学(可授医学...
  • 27 篇 法学
  • 23 篇 经济学
  • 14 篇 农学
  • 6 篇 教育学
  • 5 篇 军事学
  • 3 篇 艺术学
  • 2 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 198 篇 hadron colliders
  • 72 篇 higgs bosons
  • 66 篇 hadrons
  • 54 篇 relativistic hea...
  • 52 篇 w & z bosons
  • 40 篇 particle decays
  • 38 篇 top quark
  • 37 篇 hadron-hadron sc...
  • 34 篇 particle product...
  • 34 篇 quark & gluon je...
  • 33 篇 supersymmetric m...
  • 32 篇 deep learning
  • 28 篇 supersymmetry
  • 27 篇 bottom quark
  • 27 篇 cosmic rays
  • 26 篇 quantum chromody...
  • 26 篇 electroweak inte...
  • 25 篇 machine learning
  • 25 篇 quantum cryptogr...
  • 25 篇 bosons

机构

  • 639 篇 department of ph...
  • 558 篇 cavendish labora...
  • 519 篇 oliver lodge lab...
  • 510 篇 infn sezione di ...
  • 496 篇 physikalisches i...
  • 491 篇 infn sezione di ...
  • 443 篇 university of ch...
  • 440 篇 infn sezione di ...
  • 419 篇 infn laboratori ...
  • 401 篇 infn sezione di ...
  • 355 篇 infn sezione di ...
  • 348 篇 infn sezione di ...
  • 342 篇 infn sezione di ...
  • 335 篇 infn sezione di ...
  • 323 篇 iccub universita...
  • 297 篇 infn sezione di ...
  • 287 篇 universiteit maa...
  • 286 篇 fakultät physik ...
  • 267 篇 faculty of scien...
  • 265 篇 department for p...

作者

  • 192 篇 c. alexa
  • 190 篇 g. bella
  • 189 篇 j. m. izen
  • 187 篇 j. strandberg
  • 184 篇 d. calvet
  • 184 篇 c. amelung
  • 176 篇 n. orlando
  • 172 篇 y. tayalati
  • 170 篇 v. chiarella
  • 169 篇 g. spigo
  • 166 篇 f. siegert
  • 162 篇 s. veneziano
  • 158 篇 a. dimitrievska
  • 156 篇 m. lu
  • 156 篇 f. deliot
  • 154 篇 beiter a.
  • 154 篇 r. ströhmer
  • 150 篇 barter w.
  • 148 篇 m. rijssenbeek
  • 148 篇 s. jin

语言

  • 2,113 篇 英文
  • 232 篇 其他
  • 38 篇 中文
检索条件"机构=State Key Laboratory of High Performance Computing and College of Computer Science and Technology"
2381 条 记 录,以下是441-450 订阅
Multi-modal Prompts with Primitives Enhancement for Compositional Zero-Shot Learning
收藏 引用
IEEE Transactions on Circuits and Systems for Video technology 2025年
作者: Jin, Yutang Chen, Shiming Tong, Tianle Ding, Weiping Wang, Yisong Guizhou University State Key Laboratory of Public Big Data College of Computer Science and Technology Guiyang550025 China Mohamed bin Zayed University of Artificial Intelligence Department of Computer Vision Abu Dhabi United Arab Emirates Guizhou Suanjia Computing Service Co. Ltd. Guiyang550025 China Nantong University School of Artificial Intelligence and Computer Science Nantong226019 China
Compositional zero-shot learning (CZSL) aims to recognize novel compositions of known attributes and objects without requiring additional training data. Recent CZSL methods based on vision-language models(e.g., CLIP) ... 详细信息
来源: 评论
Explicitly represent the boundary of ReLU NN as a classifier and measure its robustness
Explicitly represent the boundary of ReLU NN as a classifier...
收藏 引用
International Conference on Electronics, Communications and Information technology (CECIT)
作者: Yangyi Hu College of Computer Science and Technology Institute for Quantum Information & State Key Laboratory of High Performance Computing National University of Defense Technology Changsha China College of Computer Science National University of Defense Technology Changsha China
Adversarial examples pose a great threat to the application of neural network as a classifier in areas with high security requirements. Intuitively, the adversarial property of neural network is closely related to the... 详细信息
来源: 评论
Precise and scalable evaluation on the robustness metric of neural networks as classifiers
Precise and scalable evaluation on the robustness metric of ...
收藏 引用
International Conference on Electronics, Communications and Information technology (CECIT)
作者: Yangyi Hu College of Computer Science and Technology Institute for Quantum Information & State Key Laboratory of High Performance Computing National University of Defense Technology Changsha China College of Computer Science National University of Defense Technology Changsha China
It is well known that the minimum adversarial distortion associated with a specific sample x 0 reflects the local robustness of neural networks. However, it is intractable to solve the optimization problem related to... 详细信息
来源: 评论
Neuron Circuit Design and Signal Integrity Analysis of a Large-scale Memristor-based Crossbar Array
收藏 引用
IEEE Transactions on Components, Packaging and Manufacturing technology 2025年
作者: Li, Yan Fang, Lidan Li, Da Zhang, Ling Zhou, Haomiao Wang, Jiawei Liu, En-Xiao Li, Er-Ping China Jiliang University Key Laboratory of Electro-magnetic Wave Information Technology and Metrology of Zhejiang Province College of Information Engineering Hangzhou310018 China China Jiliang University Modern Science and Technology College Yiwu322000 China Zhejiang University Key Laboratory of Advanced Micro/Nano Electronic Devices and Smart System Hangzhou310027 China Urbana–Champaign Institute Zhejiang University Zhejiang University–the University of Illinois Haining314400 China A*STAR Institute of High Performance Computing 1 Fusionpolis Way Singapore Singapore
This paper addresses the limitations of standard chips in processing large-scale datasets by leveraging neuromorphic architectures, particularly spiking neural networks (SNNs), to simulate the pulsed signals of biolog... 详细信息
来源: 评论
Diffusion-based Dynamic Contract for Federated AI Agent Construction in Mobile Metaverses
arXiv
收藏 引用
arXiv 2025年
作者: Wen, Jinbo Kang, Jiawen Zhang, Yang Zhong, Yue Niyato, Dusit Xu, Jie Tang, Jianhang Yuen, Chau College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China School of Automation Guangdong University of Technology China College of Computing and Data Science Nanyang Technological University Singapore Guangdong Provincial Key Laboratory of Future Networks of Intelligence The Chinese University of Hong Kong Shenzhen China State Key Laboratory of Public Big Data Guizhou University China School of Electrical and Electronics Engineering Nanyang Technological University Singapore
Mobile metaverses have attracted significant attention from both academia and industry, which are envisioned as the next-generation Internet, providing users with immersive and ubiquitous metaverse services through mo... 详细信息
来源: 评论
Graph adversarial self-supervised learning  21
Graph adversarial self-supervised learning
收藏 引用
Proceedings of the 35th International Conference on Neural Information Processing Systems
作者: Longqi Yang Liangliang Zhang Wenjing Yang Institute for Quantum Information & State Key Laboratory of High Performance Computing College of Computer Science and Technology National University of Defense Technology Changsha China and Defense Innovation Institute Beijing China Institute of Systems Engineering AMS Beijing China Institute for Quantum Information & State Key Laboratory of High Performance Computing College of Computer Science and Technology National University of Defense Technology Changsha China
This paper studies a long-standing problem of learning the representations of a whole graph without human supervision. The recent self-supervised learning methods train models to be invariant to the transformations (v...
来源: 评论
Detection of two TeV gamma-ray outbursts from NGC 1275 by LHAASO
收藏 引用
Monthly Notices of the Royal Astronomical Society 2025年 第2期540卷 1860-1869页
作者: Cao, Zhen Aharonian, F. Axikegu Bai, Y.X. Bao, Y.W. Bastieri, D. Bi, X.J. Bi, Y.J. Bian, W. Bukevich, A.V. Cao, Q. Cao, W.Y. Cao, Z. Chang, J. Chang, J.F. Chen, A.M. Chen, E.S. Chen, H.X. Chen, L. Chen, L. Chen, M.J. Chen, M.L. Chen, Q.H. Chen, S. Chen, S.H. Chen, S.Z. Chen, T.L. Chen, Y. Cheng, N. Cheng, Y.D. Chu, M.C. Cui, M.Y. Cui, S.W. Cui, X.H. Cui, Y.D. Dai, B.Z. Dai, H.L. Dai, Z.G. Danzengluobu Dong, X.Q. Duan, K.K. Fan, J.H. Fan, Y.Z. Fang, J. Fang, J.H. Fang, K. Feng, C.F. Feng, H. Feng, L. Feng, S.H. Feng, X.T. Feng, Y. Feng, Y.L. Gabici, S. Gao, B. Gao, C.D. Gao, Q. Gao, W. Gao, W.K. Ge, M.M. Ge, T.T. Geng, L.S. Giacinti, G. Gong, G.H. Gou, Q.B. Gu, M.H. Guo, F.L. Guo, J. Guo, X.L. Guo, Y.Q. Guo, Y.Y. Han, Y.A. Hannuksela, O.A. Hasan, M. He, H.H. He, H.N. He, J.Y. He, Y. Hor, Y.K. Hou, B.W. Hou, C. Hu, H.B. Hu, Q. Hu, S.C. Huang, C. Huang, D.H. Huang, T.Q. Huang, W.J. Huang, X.T. Huang, X.Y. Huang, Y. Huang, Y.Y. Ji, X.L. Jia, H.Y. Jia, K. Jiang, H.B. Jiang, K. Jiang, X.W. Jiang, Z.J. Jin, M. Kang, M.M. Karpikov, I. Khangulyan, D. Kuleshov, D. Kurinov, K. Li, B.B. Li, C.M. Li, C. Li, C. Li, D. Li, F. Li, H.B. Li, H.C. Li, J. Li, J. Li, K. Li, S.D. Li, W.L. Li, W.L. Li, X.R. Li, X. Li, Y.Z. Li, Z. Li, Z. Liang, E.W. Liang, Y.F. Lin, S.J. Liu, B. Liu, C. Liu, D. Liu, D.B. Liu, H. Liu, H.D. Liu, J. Liu, J.L. Liu, M.Y. Liu, R.Y. Liu, S.M. Liu, W. Liu, Y. Liu, Y.N. Luo, Q. Luo, Y. Lv, H.K. Ma, B.Q. Ma, L.L. Ma, X.H. Mao, J.R. Min, Z. Mitthumsiri, W. Mu, H.J. Nan, Y.C. Neronov, A. Ng, K.C.Y. Ou, L.J. Pattarakijwanich, P. Pei, Z.Y. Qi, J.C. Qi, M.Y. Qiao, B.Q. Qin, J.J. Raza, A. Ruffolo, D. Sáiz, A. Saeed, M. Semikoz, D. Shao, L. Shchegolev, O. Sheng, X.D. Shu, F.W. Song, H.C. Stenkin, Yu V. Stepanov, V. Key Laboratory of Particle Astrophysics & Experimental Physics Division & Computing Center Institute of High Energy Physics Chinese Academy of Sciences Beijing100049 China University of Chinese Academy of Sciences Beijing100049 China TIANFU Cosmic Ray Research Center Sichuan Chengdu China Dublin Institute for Advanced Studies 31 Fitzwilliam Place 2 Dublin Ireland Max-Planck-Institut for Nuclear Physics P.O. Box 103980 HeidelbergD-69029 Germany School of Physical Science and Technology School of Information Science and Technology Southwest Jiaotong University Sichuan Chengdu610031 China School of Astronomy and Space Science Nanjing University Jiangsu Nanjing210023 China Center for Astrophysics Guangzhou University Guangdong Guangzhou510006 China Tsung-Dao Lee Institute School of Physics and Astronomy Shanghai Jiao Tong University Shanghai200240 China Institute for Nuclear Research of Russian Academy of Sciences Moscow117312 Russia Hebei Normal University Hebei Shijiazhuang050024 China University of Science and Technology of China Anhui Hefei230026 China State Key Laboratory of Particle Detection and Electronics China Key Laboratory of Dark Matter and Space Astronomy Key Laboratory of Radio Astronomy Purple Mountain Observatory Chinese Academy of Sciences Jiangsu Nanjing210023 China Research Center for Astronomical Computing Zhejiang Laboratory Zhejiang Hangzhou311121 China Key Laboratory for Research in Galaxies and Cosmology Shanghai Astronomical Observatory Chinese Academy of Sciences Shanghai200030 China School of Physics and Astronomy Yunnan University Yunnan Kunming650091 China Ministry of Education Tibet Lhasa850000 China Department of Physics The Chinese University of Hong Kong New Territories Shatin Hong Kong Hong Kong Key Laboratory of Radio Astronomy and Technology National Astronomical Observatories Chinese Academy of Sciences Beijing100101 China Sun Yat-sen University 519000 Zhuhai Guangdong Guangzhou510275
The Water Cherenkov Detector Array (WCDA) is one of the components of Large high Altitude Air Shower Observatory (LHAASO) and can monitor any sources over two-thirds of the sky for up to 7 h per day with >98 per ce... 详细信息
来源: 评论
WaveFormer: A Wavelet Transformer for Parkinson Disease’s Retinal Layer Segmentation in OCT
WaveFormer: A Wavelet Transformer for Parkinson Disease’s R...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Yanlin Chen Xiaoqing Zhang Tianao Wang Chen Tang Haili Ye Jiang Liu Department of Computer Science and Engineering Research Institute of Trustworthy Autonomous Systems Southern University of Science and Technology Shenzhen China Shenzhen Institute of Advanced Technology Center for High Performance Computing and Shenzhen Key Laboratory of Intelligent Bioinformatics Chinese Academy of Sciences Shenzhen China School of Ophthalmology and Optometry Wenzhou Medical University Wenzhou China The Oujiang Laboratory The Affiliated Eye Hospital Wenzhou Medical University Wenzhou China
Pathology symptoms of Parkinson disease (PD) are different from those of retinal diseases in the retinal layers, which are subtle. However, segmenting pathology information of PD from retinal layers automatically base... 详细信息
来源: 评论
Area-efficient memristor spiking neural networks and supervised learning method
收藏 引用
science China(Information sciences) 2019年 第9期62卷 196-198页
作者: Errui ZHOU Liang FANG Rulin LIU Zhensen TANG Institute for Quantum Information & State Key Laboratory of High Performance Computing College of ComputerNational University of Defense Technology
Dear editor,Memristors have attracted a lot of attention since HP Labs first reported their memristive devices [1].They have been employed in many fields, including non-volatile memory, image processing, and neuromorp... 详细信息
来源: 评论
Optimal Bilinear Equalizer for Cell-Free Massive MIMO Systems over Correlated Rician Channels
收藏 引用
IEEE Transactions on Signal Processing 2025年
作者: Wang, Zhe Zhang, Jiayi Bjornson, Emil Niyato, Dusit Ai, Bo Beijing Jiaotong University State Key Laboratory of Advanced Rail Autonomous Operation Beijing100044 China Beijing Jiaotong University School of Electronics and Information Engineering Beijing100044 China KTH Royal Institute of Technology Department of Computer Science Stockholm114 28 Sweden Nanyang Technological University College of Computing & Data Science 639798 Singapore
In this paper, we explore the low-complexity optimal bilinear equalizer (OBE) combining scheme design for cell-free massive multiple-input multiple-output networks with spatially correlated Rician fading *** provide a... 详细信息
来源: 评论