咨询与建议

限定检索结果

文献类型

  • 1,758 篇 期刊文献
  • 602 篇 会议
  • 2 册 图书

馆藏范围

  • 2,362 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,513 篇 理学
    • 1,130 篇 物理学
    • 312 篇 数学
    • 120 篇 化学
    • 115 篇 生物学
    • 93 篇 地球物理学
    • 90 篇 统计学(可授理学、...
    • 31 篇 系统科学
  • 1,281 篇 工学
    • 590 篇 计算机科学与技术...
    • 440 篇 软件工程
    • 247 篇 核科学与技术
    • 157 篇 电子科学与技术(可...
    • 143 篇 信息与通信工程
    • 135 篇 光学工程
    • 126 篇 电气工程
    • 98 篇 控制科学与工程
    • 97 篇 生物工程
    • 92 篇 化学工程与技术
    • 86 篇 仪器科学与技术
    • 62 篇 生物医学工程(可授...
    • 57 篇 机械工程
    • 54 篇 材料科学与工程(可...
    • 52 篇 冶金工程
    • 44 篇 力学(可授工学、理...
    • 43 篇 动力工程及工程热...
    • 34 篇 航空宇航科学与技...
  • 180 篇 管理学
    • 113 篇 管理科学与工程(可...
    • 69 篇 图书情报与档案管...
    • 40 篇 工商管理
  • 55 篇 医学
    • 46 篇 临床医学
    • 36 篇 基础医学(可授医学...
  • 27 篇 法学
  • 22 篇 经济学
  • 14 篇 农学
  • 5 篇 军事学
  • 4 篇 教育学
  • 3 篇 艺术学
  • 2 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 198 篇 hadron colliders
  • 72 篇 higgs bosons
  • 64 篇 hadrons
  • 54 篇 relativistic hea...
  • 52 篇 w & z bosons
  • 40 篇 particle decays
  • 38 篇 top quark
  • 34 篇 hadron-hadron sc...
  • 34 篇 particle product...
  • 34 篇 quark & gluon je...
  • 33 篇 supersymmetric m...
  • 30 篇 deep learning
  • 28 篇 supersymmetry
  • 27 篇 bottom quark
  • 27 篇 cosmic rays
  • 26 篇 quantum chromody...
  • 26 篇 electroweak inte...
  • 25 篇 machine learning
  • 25 篇 quantum cryptogr...
  • 25 篇 bosons

机构

  • 638 篇 department of ph...
  • 557 篇 cavendish labora...
  • 515 篇 oliver lodge lab...
  • 511 篇 infn sezione di ...
  • 490 篇 infn sezione di ...
  • 490 篇 physikalisches i...
  • 439 篇 infn sezione di ...
  • 436 篇 university of ch...
  • 417 篇 infn laboratori ...
  • 399 篇 infn sezione di ...
  • 354 篇 infn sezione di ...
  • 346 篇 infn sezione di ...
  • 341 篇 infn sezione di ...
  • 333 篇 infn sezione di ...
  • 321 篇 iccub universita...
  • 294 篇 infn sezione di ...
  • 285 篇 universiteit maa...
  • 276 篇 fakultät physik ...
  • 264 篇 faculty of scien...
  • 262 篇 department for p...

作者

  • 191 篇 c. alexa
  • 189 篇 j. m. izen
  • 188 篇 g. bella
  • 185 篇 j. strandberg
  • 183 篇 d. calvet
  • 183 篇 c. amelung
  • 175 篇 n. orlando
  • 171 篇 y. tayalati
  • 168 篇 g. spigo
  • 168 篇 v. chiarella
  • 165 篇 f. siegert
  • 161 篇 s. veneziano
  • 157 篇 a. dimitrievska
  • 156 篇 f. deliot
  • 156 篇 beiter a.
  • 154 篇 m. lu
  • 154 篇 r. ströhmer
  • 149 篇 barter w.
  • 148 篇 m. rijssenbeek
  • 148 篇 s. jin

语言

  • 2,203 篇 英文
  • 121 篇 其他
  • 40 篇 中文
检索条件"机构=State Key Laboratory of High Performance Computing and College of Computer Science and Technology"
2362 条 记 录,以下是561-570 订阅
排序:
Usage: Uncertain Flow Graph and Spatio-Temporal Graph Network-Based Saturation Attack Detection Method
SSRN
收藏 引用
SSRN 2023年
作者: Wang, Kaixi Cui, Yunhe Qian, Qing Chen, Yi Guo, Chun Shen, Guowei Engineering Research Center of Text Computing & Cognitive Intelligence Guizhou University China State Key Laboratory of Public Big Data Guizhou University China Guizhou Provincial Characteristic Key Laboratory of Software Engineering and Information Security Guizhou University China College of Computer Science and Technology Guizhou University China School of Information Guizhou University of Finance and Economics China
With the development of Software-Defined Networking (SDN), its security problems have become important research content. Among these security problems, saturation attack is one of the most destructive problems. Satura... 详细信息
来源: 评论
Human-cyber-physical systems:concepts,challenges,and research opportunities
收藏 引用
Frontiers of Information technology & Electronic Engineering 2020年 第11期21卷 1535-1553页
作者: Zhiming LIU Ji WANG RISE-Centre for Research and Innovation in Software Engineering School of Computer and Information ScienceSouthwest UniversityChongqing 400715China State Key Laboratory for High Performance Computing School of ComputerNational University of Defense TechnologyChangsha 410073China
In this perspective article,we first recall the historic background of human-cyber-physical systems(HCPSs),and then introduce and clarify important *** discuss the key challenges in establishing the scientific foundat... 详细信息
来源: 评论
Federated Learning for Recognizing Private Handwritten Numbers
Federated Learning for Recognizing Private Handwritten Numbe...
收藏 引用
2021 IEEE International Conference on Data science and computer Application, ICDSCA 2021
作者: Wang, Di Jiang, Yuchen Zhao, Yibo Chen, Panyang Li, Ang Pan, Kun Institution of Information Engineering Chinese Academy of Sciences State Key Laboratory of Information Security Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China Computer Science and Technology College of Computer Science Chongqing University Chongqing China Zibo Shiyan High School International Division Zibo Shandong China Computer Science Department of Computer Science and Software Engineering Auburn University Auburn United States Shanghai Shangde Experimental School Shanghai China School of Computing University of Leeds Leeds United Kingdom
Federated learning (FL) is a new technology in the field of machine learning, which trains an algorithm across multiple decentralized edge devices or servers holding data samples, without exchanging their data samples... 详细信息
来源: 评论
LHAASO-KM2A detector simulation using Geant4
收藏 引用
Radiation Detection technology and Methods 2024年 第3期8卷 1437-1447页
作者: Zhen Cao F.Aharonian Q.An Axikegu Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi J.T.Cai Q.Cao W.Y.Cao Zhe Cao J.Chang J.F.Chang A.M.Chen E.S.Chen Liang Chen Lin Chen Long Chen M.J.Chen M.L.Chen Q.H.Chen S.H.Chen S.Z.Chen T.L.Chen Y.Chen N.Cheng Y.D.Cheng M.Y.Cui S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu X.Q.Dong K.K.Duan J.H.Fan Y.Z.Fan J.Fang K.Fang C.F.Feng L.Feng S.H.Feng X.T.Feng Y.L.Feng S.Gabici B.Gao C.D.Gao L.Q.Gao Q.Gao W.Gao W.K.Gao M.M.Ge L.S.Geng G.Giacinti G.H.Gong Q.B.Gou M.H.Gu F.L.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han H.H.He H.N.He J.Y.He X.B.He Y.He Y.K.Hor B.W.Hou C.Hou X.Hou H.B.Hu Q.Hu S.C.Hu D.H.Huang T.Q.Huang W.J.Huang X.T.Huang X.Y.Huang Y.Huang Z.C.Huang X.L.Ji H.Y.Jia K.Jia K.Jiang X.W.Jiang Z.J.Jiang M.Jin M.M.Kang T.Ke D.Kuleshov K.Kurinov B.B.Li Cheng Li Cong Li D.Li F.Li H.B.Li H.C.Li H.Y.Li J.Li Jian Li Jie Li K.Li W.L.Li W.L.Li X.R.Li Xin Li Y.Z.Li Zhe Li Zhuo Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu H.Liu H.D.Liu J.Liu J.L.Liu J.Y.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.Liu Y.N.Liu R.Lu Q.Luo H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao Z.Min W.Mitthumsiri H.J.Mu Y.C.Nan A.Neronov Z.W.Ou B.Y.Pang P.Pattarakijwanich Z.Y.Pei M.Y.Qi Y.Q.Qi B.Q.Qiao J.J.Qin D.Ruffolo A.Sáiz D.Semikoz C.Y.Shao L.Shao O.Shchegolev X.D.Sheng F.W.Shu H.C.Song Yu.V.Stenkin V.Stepanov Y.Su Q.N.Sun X.N.Sun Z.B.Sun P.H.T.Tam Q.W.Tang Z.B.Tang W.W.Tian C.Wang C.B.Wang G.W.Wang H.G.Wang H.H.Wang J.C.Wang K.Wang L.P.Wang L.Y.Wang P.H.Wang R.Wang W.Wang X.G.Wang X.Y.Wang Y.Wang Y.D.Wang Y.J.Wang Z.H.Wang Z.X.Wang Zhen Wang Zheng Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu S.Wu X.F.Wu Y.S.Wu S.Q.Xi J.Xia J.J.Xia G.M.Xiang D.X.Xiao G.Xiao G.G.Xin Y.L.Xin Y.Xing Z.Xiong D.L.Xu R.F.Xu R.X.Xu W.L.Xu L.Xue D.H.Yan J.Z.Yan T.Yan C.W.Yang F.Yang F.F.Yang H.W.Yang J.Y.Yang L.L.Yang M.J.Yang R.Z.Yang S.B.Yang Y.H.Yao Z.G.Yao Y.M.Ye L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.Yue H.D.Zeng T.X.Zeng W.Zeng M.Zha B.B.Zhang F.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang L.X.Zhang Li Zhang P.F.Zhang P.P.Zhang R.Zhang S.B.Zh Key Laboratory of Particle Astrophysics&Experimental Physics Division&Computing Center Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049China University of Chinese Academy of Sciences Beijing100049China TIANFU Cosmic Ray Research Center ChengduSichuanChina Dublin Institute for Advanced Studies 31 Fitzwilliam Place2 DublinIreland Max-Planck-Institute for Nuclear Physics 69029Heidelberg103980Germany State Key Laboratory of Particle Detection and Electronics BeijingChina University of Science and Technology of China Hefei230026AnhuiChina School of Physical Science and Technology&School of Information Science and Technology Southwest Jiaotong UniversityChengdu610031SichuanChina School of Astronomy and Space Science Nanjing UniversityNanjing210023JiangsuChina Center for Astrophysics Guangzhou UniversityGuangzhou510006GuangdongChina Hebei Normal University Shijiazhuang050024HebeiChina Key Laboratory of Dark Matter and Space Astronomy&Key Laboratory of Radio Astronomy Purple Mountain ObservatoryChinese Academy of SciencesNanjing 210023JiangsuChina Tsung-Dao Lee Institute&School of Physics and Astronomy Shanghai Jiao Tong UniversityShanghai 200240China Key Laboratory for Research in Galaxies and Cosmology Shanghai Astronomical ObservatoryChinese Academy of SciencesShanghai 200030China Key Laboratory of Cosmic Rays(Tibet University) Ministry of EducationLhasa 850000TibetChina National Astronomical Observatories Chinese Academy of SciencesBeijing 100101China School of Physics and Astronomy(Zhuhai)&School of Physics(Guangzhou)&Sino-French Institute of Nuclear Engineering and Technology(Zhuhai) Sun Yat-sen UniversityGuangzhouZhuhai 510275519000GuangdongChina School of Physics and Astronomy Yunnan UniversityKunming 650091YunnanChina Institute of Frontier and Interdisciplinary Science Shandong UniversityQingdao 266237ShandongChina APC UniversitéParis CitéCNRS/IN2P3CEA/IRFUObservatoire de ParisParis 11975205France Department of Engineering Phys
KM2A is one of the main sub-arrays of LHAASO,working on gamma ray astronomy and cosmic ray physics at energies above 10 *** simulation is the important foundation for estimating detector performance and data *** is a ... 详细信息
来源: 评论
Intensity correlations in decoy-state BB84 quantum key distribution systems
arXiv
收藏 引用
arXiv 2024年
作者: Trefilov, Daniil Sixto, Xoel Zapatero, Víctor Huang, Anqi Curty, Marcos Makarov, Vadim Vigo Quantum Communication Center University of Vigo VigoE-36310 Spain School of Telecommunication Engineering Department of Signal Theory and Communications University of Vigo VigoE-36310 Spain atlanTTic Research Center University of Vigo VigoE-36310 Spain Russian Quantum Center Skolkovo Moscow121205 Russia National Research University Higher School of Economics Moscow101000 Russia Institute for Quantum Information State Key Laboratory of High Performance Computing College of Computer Science and Technology National University of Defense Technology Changsha410073 China NTI Center for Quantum Communications National University of Science and Technology MISiS Moscow119049 Russia
The decoy-state method is a prominent approach to enhance the performance of quantum key distribution (QKD) systems that operate with weak coherent laser sources. Due to the limited transmissivity of single photons in... 详细信息
来源: 评论
Parameterization-driven Neural Surface Reconstruction for Object-oriented Editing in Neural Rendering
arXiv
收藏 引用
arXiv 2023年
作者: Xu, Baixin Hu, Jiangbei Hou, Fei Lin, Kwan-Yee Wu, Wayne Qian, Chen He, Ying S-Lab Nanyang Technological University Singapore College of Computing and Data Science Nanyang Technological University Singapore Dalian University of Technology China State Key Laboratory of Computer Science Institute of Software Chinese Academy of Sciences China University of Chinese Academy of Sciences China Shanghai AI Lab China SenseTime Research China
The advancements in neural rendering have increased the need for techniques that enable intuitive editing of 3D objects represented as neural implicit surfaces. This paper introduces a novel neural algorithm for param... 详细信息
来源: 评论
FishEye8K: A Benchmark and Dataset for Fisheye Camera Object Detection
FishEye8K: A Benchmark and Dataset for Fisheye Camera Object...
收藏 引用
IEEE computer Society Conference on computer Vision and Pattern Recognition Workshops (CVPRW)
作者: Munkhjargal Gochoo Munkh-Erdene Otgonbold Erkhembayar Ganbold Jun-Wei Hsieh Ming-Ching Chang Ping-Yang Chen Byambaa Dorj Hamad Al Jassmi Ganzorig Batnasan Fady Alnajjar Mohammed Abduljabbar Fang-Pang Lin Department of Computer Science and Software Engineering United Arab Emirates University UAE Emirates Center for Mobility Research United Arab Emirates University UAE College of AI and Green Energy National Yang Ming Chiao Tung University Taiwan University at Albany — State University of New York NY USA Department of Computer Science National Yang Ming Chiao Tung University Taiwan Mongolian University of Science and Technology Mongolia National Center for High-Performance Computing Taiwan
With the advance of AI, road object detection has been a prominent topic in computer vision, mostly using perspective cameras. Fisheye lens provides omnidirectional wide coverage for using fewer cameras to monitor roa...
来源: 评论
Hsm2: A hybrid and scalable metadata management method in distributed file systems  10th
Hsm2: A hybrid and scalable metadata management method in di...
收藏 引用
10th International Symposium on Parallel Architectures, Algorithms and Programming, PAAP 2019
作者: Wang, Yiduo Chen, Youxu Shao, Xinyang Chen, Jinzhong Yuan, Liu Xu, Yinlong School of Computer Science and Technology University of Science and Technology of China AnHui Province Key Laboratory of High Performance Computing Hefei China East China Research Institute of Electronic Engineering Hefei China China Academy of Electronics and Information Technology Beijing China
In the bigdata era, metadata performance is critical in modern distributed file systems. Traditionally, the metadata management strategies like the subtree partitioning method focus on keeping namespace locality, whil... 详细信息
来源: 评论
HVIS: A Human-like Vision and Inference System for Human Motion Prediction  39
HVIS: A Human-like Vision and Inference System for Human Mot...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Lyu, Kedi Chen, Haipeng Liu, Zhenguang Yin, Yifang Lin, Yukang Jiao, Yingying College of Computer Science and Technology Jilin University Changchun China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun China The State Key Laboratory of Blockchain and Data Security Zhejiang University Hangzhou China Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security Hangzhou China Institute for Infocomm Research (I2R) A*STAR Singapore Tsinghua Shenzhen International Graduate School Nanshan District Shenzhen China
Grasping the intricacies of human motion, which involve perceiving spatio-temporal dependence and multi-scale effects, is essential for predicting human motion. While humans inherently possess the requisite skills to ... 详细信息
来源: 评论
Cluster Assumption-Guided Timestamp-Supervised Temporal Action Segmentation
收藏 引用
IEEE Transactions on Multimedia 2025年
作者: Ren, Ziyou Li, Guozhang Cheng, Nan Wu, Anqi Wang, Nannan Gao, Xinbo Xidian University State Key Laboratory of Integrated Services Networks School of Telecommunications Engineering Shaanxi Xi'an710071 China Carnegie Mellon University Robotics Institute School of Computer Science PittsburghPA15213 United States Beijing Normal University School of Artificial Intelligence Haidian District Beijing100875 China Georgia Institute of Technology School of Computational Science and Engineering College of Computing AtlantaGA30308 United States Xidian University School of Electronic Engineering Xi'an710071 China Chongqing University of Posts and Telecommunications Chongqing Key Laboratory of Image Cognition Chongqing400065 China
Current timestamp-supervised temporal action segmentation (TS-TAS) methods typically follow a two-phase pipeline: initializing the model with timestamp labels and refining it with pseudo-labels. However, limited by th... 详细信息
来源: 评论