咨询与建议

限定检索结果

文献类型

  • 1,534 篇 会议
  • 1,433 篇 期刊文献

馆藏范围

  • 2,967 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,996 篇 工学
    • 764 篇 计算机科学与技术...
    • 718 篇 软件工程
    • 676 篇 控制科学与工程
    • 386 篇 机械工程
    • 332 篇 电气工程
    • 224 篇 化学工程与技术
    • 178 篇 信息与通信工程
    • 170 篇 电子科学与技术(可...
    • 163 篇 动力工程及工程热...
    • 156 篇 仪器科学与技术
    • 141 篇 生物工程
    • 132 篇 材料科学与工程(可...
    • 125 篇 交通运输工程
    • 94 篇 生物医学工程(可授...
    • 89 篇 力学(可授工学、理...
    • 89 篇 光学工程
    • 76 篇 环境科学与工程(可...
    • 73 篇 冶金工程
    • 68 篇 安全科学与工程
    • 65 篇 土木工程
  • 1,081 篇 理学
    • 525 篇 数学
    • 275 篇 物理学
    • 233 篇 系统科学
    • 188 篇 化学
    • 172 篇 生物学
    • 168 篇 统计学(可授理学、...
  • 432 篇 管理学
    • 385 篇 管理科学与工程(可...
    • 106 篇 工商管理
  • 115 篇 医学
    • 84 篇 临床医学
    • 70 篇 基础医学(可授医学...
  • 63 篇 经济学
  • 60 篇 法学
  • 46 篇 农学
  • 12 篇 艺术学
  • 9 篇 文学
  • 6 篇 军事学
  • 5 篇 教育学

主题

  • 47 篇 feature extracti...
  • 45 篇 optimization
  • 43 篇 training
  • 40 篇 deep learning
  • 38 篇 neural networks
  • 36 篇 reinforcement le...
  • 32 篇 stability analys...
  • 32 篇 trajectory
  • 32 篇 machine learning
  • 31 篇 robustness
  • 30 篇 three-dimensiona...
  • 30 篇 nonlinear system...
  • 29 篇 robots
  • 29 篇 uncertainty
  • 29 篇 mathematical mod...
  • 29 篇 sensors
  • 29 篇 heuristic algori...
  • 28 篇 computational mo...
  • 28 篇 accuracy
  • 28 篇 transportation

机构

  • 215 篇 state key labora...
  • 159 篇 state key labora...
  • 106 篇 university of ch...
  • 105 篇 state key labora...
  • 103 篇 the state key la...
  • 84 篇 state key labora...
  • 78 篇 school of automa...
  • 75 篇 school of artifi...
  • 64 篇 state key labora...
  • 57 篇 the state key la...
  • 52 篇 ieee
  • 51 篇 school of automa...
  • 49 篇 qingdao academy ...
  • 49 篇 state key labora...
  • 39 篇 huzhou institute...
  • 35 篇 huzhou institute...
  • 35 篇 state key labora...
  • 35 篇 state key labora...
  • 33 篇 state key labora...
  • 33 篇 the state key la...

作者

  • 103 篇 fei-yue wang
  • 97 篇 hongye su
  • 69 篇 gao fei
  • 61 篇 wang fei-yue
  • 58 篇 xu chao
  • 57 篇 su hongye
  • 54 篇 wang yue
  • 52 篇 xiong rong
  • 52 篇 gang xiong
  • 43 篇 zhitao liu
  • 33 篇 xiong gang
  • 30 篇 lei xie
  • 28 篇 zhihuan song
  • 27 篇 jian chu
  • 27 篇 fei gao
  • 27 篇 chao xu
  • 26 篇 qinglai wei
  • 25 篇 weimin wu
  • 25 篇 rong xiong
  • 24 篇 zhen shen

语言

  • 2,608 篇 英文
  • 249 篇 其他
  • 106 篇 中文
检索条件"机构=State Key Laboratory of Industrial Control Technology and Institute of Cyber-Systems and Control"
2967 条 记 录,以下是2001-2010 订阅
排序:
Cooperative Lane Change Motion Planning of Connected and Automated Vehicles: A Stepwise Computational Framework
Cooperative Lane Change Motion Planning of Connected and Aut...
收藏 引用
2018 IEEE Intelligent Vehicles Symposium, IV 2018
作者: Zhang, Youmin Li, Bai Zhang, Yue Jia, Ning Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing Xi'An University of Technology Xi'an710048 China Division of Systems Engineering Center for Information and Systems Engineering Boston University Boston United States Department of Mechanical Industrial and Aerospace Engineering Concordia Institute of Aerospace Design and Innovation Concordia University Montreal Canada Institute of Systems Engineering Tianjin University Tianjin China
This paper focuses on the scheme of cooperative lane change motion planning of multiple connected and automated vehicles, so as to minimize the time for lane change while penalizing large steering angles subject to ha... 详细信息
来源: 评论
Performance analysis of a photovoltaics aided coal-fired power plant
收藏 引用
Energy Procedia 2019年 158卷 1348-1353页
作者: Mingkun Jiang Yuexia Lv Tiankun Wang Zunqiang Sun Jianmin Liu Xinhai Yu Jinyue Yan Key Laboratory of Pressure Systems and Safety (MOE) School of Mechanical Engineering East China University of Science and Technology Shanghai 200237 China State Key Laboratory of Clean and Efficient Coal-fired Power Generation and Pollution Control Guodian Science and Technology Research Institute Nanjing 210023 China Applied Energy Innovation Institute Ningbo 315201 China School of Mechanical & Automotive Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China China Energy Group Beijing 100011 China School of Business Society and Technology Mälardalen University Västerås Sweden School of Chemical Science and Engineering Royal Institute of Technology Stockholm Sweden
In this article, integration of photovoltaics (PV) into a coal-fired power plant was proposed. The performance including economic analysis and environmental impact was conducted by a case study in the northwest area o... 详细信息
来源: 评论
Deep learning for object detection and grasping: A survey
Deep learning for object detection and grasping: A survey
收藏 引用
2018 IEEE International Conference on Information and Automation, ICIA 2018
作者: Jia, Qun Cai, Jun Cao, Zhiqiang Wu, Yelan Zhao, Xionglei Yu, Junzhi State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing101408 China School of Computer and Information Engineering Beijing Technology and Business University Beijing100048 China
Detecting and grasping objects in unstructured environments is an important yet difficult task. Fortunately, the breakthroughs from deep convolutional networks stimulate the development of object detection and graspin... 详细信息
来源: 评论
Experimental Study on Thermal Runaway of LiFePO4/C Battery under Heating Condition
收藏 引用
IOP Conference Series: Earth and Environmental Science 2020年 第4期546卷
作者: Fei Gao Yang Kai Congjie Wang Wei Liu Yanli Zhu State Key Laboratory of Operation and Control of Renewable Energy & Storage Systems China Electric Power Research Institute. Beijing 100192 China Beijing Institute of Technology 100081 China State Grid Anhui Electric Power CO. LTD Hefei 230000 China
The safety of lithium ion batteries is a hot topic in battery application and research at present. LiFePO4/C batteries are generally believed to be safe and have been widely used. The LiFePO4/C batteries are taken as ...
来源: 评论
Guidance Vector Field Encoding based on Contraction Analysis
Guidance Vector Field Encoding based on Contraction Analysis
收藏 引用
European control Conference
作者: Chengshuai Wu Jian Chen Dimitri Jeltsema Chenxi Dai State Key Laboratory of Industrial Control Technology College of Control Science and Engineering Zhejiang University Hangzhou China Section Control Systems Engineering HAN University of Applied Science Arnhem CE The Netherlands Ohio State University Columbus USA
The guidance vector field encoding problem is revisited via exploiting the recently developed differential Lyapunov framework for contraction analysis. In control applications, a designed guidance vector field is util... 详细信息
来源: 评论
Ensemble of Extreme Learning Machines for Regression
Ensemble of Extreme Learning Machines for Regression
收藏 引用
Data Driven control and Learning systems (DDCLS)
作者: Atmane Khellal Hongbin Ma Qing Fei School of Automation Beijing Institute of Technology Beijing China State Key Laboratory of Intelligent Control and Decision of Complex Systems Beijing Institute of Technology China
Regression, as a particular task of machine learning, performs a vital part in data-driven modeling, by finding the connections between the system state variables without any explicit knowledge about the system, using... 详细信息
来源: 评论
An Automatic Labeling Strategy for Locomotion Mode Recognition with Robotic Transtibial Prosthesis
An Automatic Labeling Strategy for Locomotion Mode Recogniti...
收藏 引用
IEEE International Conference on cyber technology in Automation, control, and Intelligent systems
作者: Enhao Zheng Qining Wang Hong Qiao The State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences No. 95 of Zhongguancun East Road Beijing China The Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT) Peking University Beijing China University of Chinese Academy of Sciences Beijing China
Doffing and Donning the prosthetic socket seriously influenced the performances of the locomotion mode recognition. To make the recognition algorithm adaptive to the disturbances, labeling the new coming data without ... 详细信息
来源: 评论
Distributed Full Order Sliding Mode control for Finite-time Attitude Synchronization and Tracking of Spacecraft
Distributed Full Order Sliding Mode Control for Finite-time ...
收藏 引用
第37届中国控制会议
作者: Nsubuga Latifu Zhuoyue Song Chao Duan Zhen Li Housheng Su Qinghe Wu Xiangdong Liu State Key Laboratory of Intelligent Control and Decision of Complex Systems School of AutomationBeijing Institute of Technology Key Laboratory of Drive and Control of Servo Motion System Ministry of Industry and Information Technology School of Automation Huazhong University of Science and Technology
This paper investigates a distributed finite-time attitude synchronization and tracking problem of multiple spacecraft when a time varying reference signal is available to only a subset of group *** Rodrigues paramete... 详细信息
来源: 评论
Adaptive and azimuth-aware fusion network of multimodal local features for 3D object detection
arXiv
收藏 引用
arXiv 2019年
作者: Tian, Yonglin Wang, Kunfeng Wang, Yuang Tian, Yulin Wang, Zilei Wang, Fei-Yue Department of Automation University of Science and Technology of China Hefei230027 China State Key Laboratory for Management and Control of Complex Systems Institute of Automation Chinese Academy of Sciences Beijing100190 China College of Information Science and Technology Beijing University of Chemical Technology Beijing100029 China University of Science and Technology Beijing Beijing100083 China North China University of Technology Beijing100144 China
This paper focuses on the construction of stronger local features and the effective fusion of image and LiDAR data. We adopt different modalities of LiDAR data to generate richer features and present an adaptive and a... 详细信息
来源: 评论
PDP: Parallel Dynamic Programming
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2017年 第1期4卷 1-5页
作者: Fei-Yue Wang Jie Zhang Qinglai Wei Xinhu Zheng Li Li IEEE State Key Laboratory of Management and Control for Complex Systems(SKL-MCCS) Institute of AutomationChinese Academy of Sciences(CASIA) School of Computer and Control Engineering University of Chinese Academy of Sciences Research Center for Military Computational Experiments and Parallel Systems Technology National University of Defense Technology State Key Laboratory of Management and Control for Complex Systems Institute of AutomationChinese Academy of Sciences(SKL-MCCSCASIA) Qingdao Academy of Intelligent Industries Department of Computer Science and Engineering University of Minnesota Department of Automation Tsinghua University
Deep reinforcement learning is a focus research area in artificial intelligence. The principle of optimality in dynamic programming is a key to the success of reinforcement learning methods. The principle of adaptive ... 详细信息
来源: 评论