咨询与建议

限定检索结果

文献类型

  • 1,530 篇 会议
  • 1,440 篇 期刊文献

馆藏范围

  • 2,970 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,002 篇 工学
    • 770 篇 计算机科学与技术...
    • 721 篇 软件工程
    • 679 篇 控制科学与工程
    • 386 篇 机械工程
    • 336 篇 电气工程
    • 232 篇 化学工程与技术
    • 179 篇 信息与通信工程
    • 172 篇 电子科学与技术(可...
    • 162 篇 动力工程及工程热...
    • 159 篇 仪器科学与技术
    • 144 篇 生物工程
    • 127 篇 材料科学与工程(可...
    • 124 篇 交通运输工程
    • 98 篇 生物医学工程(可授...
    • 91 篇 光学工程
    • 90 篇 力学(可授工学、理...
    • 79 篇 环境科学与工程(可...
    • 76 篇 冶金工程
    • 67 篇 安全科学与工程
    • 65 篇 土木工程
  • 1,093 篇 理学
    • 523 篇 数学
    • 274 篇 物理学
    • 233 篇 系统科学
    • 194 篇 化学
    • 178 篇 生物学
    • 165 篇 统计学(可授理学、...
  • 440 篇 管理学
    • 391 篇 管理科学与工程(可...
    • 105 篇 工商管理
  • 115 篇 医学
    • 87 篇 临床医学
    • 71 篇 基础医学(可授医学...
  • 64 篇 经济学
  • 60 篇 法学
  • 52 篇 农学
  • 12 篇 艺术学
  • 9 篇 文学
  • 6 篇 教育学
  • 6 篇 军事学

主题

  • 47 篇 feature extracti...
  • 44 篇 optimization
  • 43 篇 training
  • 39 篇 deep learning
  • 38 篇 neural networks
  • 34 篇 reinforcement le...
  • 32 篇 stability analys...
  • 32 篇 trajectory
  • 32 篇 machine learning
  • 31 篇 uncertainty
  • 31 篇 robustness
  • 30 篇 three-dimensiona...
  • 30 篇 nonlinear system...
  • 29 篇 robots
  • 29 篇 computational mo...
  • 29 篇 accuracy
  • 29 篇 mathematical mod...
  • 29 篇 sensors
  • 29 篇 transportation
  • 29 篇 heuristic algori...

机构

  • 215 篇 state key labora...
  • 156 篇 state key labora...
  • 105 篇 university of ch...
  • 103 篇 the state key la...
  • 101 篇 state key labora...
  • 84 篇 state key labora...
  • 79 篇 school of automa...
  • 70 篇 school of artifi...
  • 63 篇 state key labora...
  • 57 篇 the state key la...
  • 52 篇 ieee
  • 50 篇 state key labora...
  • 49 篇 qingdao academy ...
  • 49 篇 school of automa...
  • 39 篇 huzhou institute...
  • 35 篇 state key labora...
  • 35 篇 state key labora...
  • 34 篇 huzhou institute...
  • 34 篇 state key labora...
  • 33 篇 the state key la...

作者

  • 101 篇 fei-yue wang
  • 98 篇 hongye su
  • 69 篇 gao fei
  • 60 篇 wang fei-yue
  • 58 篇 su hongye
  • 58 篇 xu chao
  • 53 篇 wang yue
  • 51 篇 xiong rong
  • 51 篇 gang xiong
  • 43 篇 zhitao liu
  • 33 篇 xiong gang
  • 31 篇 jian chu
  • 30 篇 lei xie
  • 28 篇 zhihuan song
  • 27 篇 fei gao
  • 27 篇 rong xiong
  • 26 篇 chao xu
  • 25 篇 weimin wu
  • 24 篇 zhen shen
  • 24 篇 liu yong

语言

  • 2,791 篇 英文
  • 106 篇 中文
  • 69 篇 其他
检索条件"机构=State Key Laboratory of Industrial Control Technology and Institute of Cyber-Systems and Control"
2970 条 记 录,以下是51-60 订阅
排序:
Extraction and application of intrinsic predictable component in day-ahead power prediction for wind farm cluster
收藏 引用
Energy 2025年 328卷
作者: Yang, Mao Jiang, Renxian Yu, Xinnan Wang, Bo Su, Xin Ma, Chenglian The Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology Ministry of Education Northeast Electric Power University Jilin132012 China State Key Laboratory of Operation and Control of Renewable Energy & Storage Systems China Electric Power Research Institute Beijing100912 China
With the continuous updating and iteration of artificial intelligence algorithms, prediction models emerge one after another, but the research and utilization of the predictability of wind power is still less. Therefo... 详细信息
来源: 评论
Performance-Aware control of Modular Batteries For Fast Frequency Response
收藏 引用
IEEE Transactions on Sustainable Energy 2025年
作者: He, Yutong Ruan, Guangchun Zhong, Haiwang Tsinghua University State Key Laboratory of Power System Operation and Control Department of Electrical Engineering Beijing100084 China Massachusetts Institute of Technology Lab for Information and Decision Systems CambridgeMA02139 United States
Modular batteries can be aggregated to deliver frequency regulation services for power grids. Although utilizing the idle capacity of battery modules is financially attractive, it remains challenging to consider the h... 详细信息
来源: 评论
Improving the real-time performance of Ethernet for plant automation(EPA) based industrial networks
收藏 引用
Journal of Zhejiang University-Science C(Computers and Electronics) 2013年 第6期14卷 433-448页
作者: Li LU Dong-qin FENG Jian CHU Institute of Cyber-Systems and Control Zhejiang University State Key Laboratory of Industrial Control Technology Zhejiang University
Real-time Ethernet(RTE) control systems with critical real-time requirements are called fast real-time(FRT) *** improve the real-time performance of Ethernet for plant automation(EPA),we propose an EPA-FRT *** minimum... 详细信息
来源: 评论
Mean square stability for Markov jump Boolean networks
收藏 引用
Science China(Information Sciences) 2020年 第1期63卷 190-199页
作者: Liqing WANG Mei FANG Zheng-Guang WU State Key Laboratory of Industrial Control Technology Institute of Cyber-Systems and ControlZhejiang University College of Automation Harbin Engineering University
In this paper, one of the stability definitions of Markov jump Boolean networks(MJBNs), called mean square stability(MSS), is investigated. Some necessary and sufficient conditions are presented to guarantee the MSS o... 详细信息
来源: 评论
DEEPCON: Improving Distributed Deep Learning Model Consistency in Edge-Cloud Environments via Distillation
收藏 引用
IEEE Transactions on Cognitive Communications and Networking 2025年
作者: Qian, Bin Qian, Jiaxu Wen, Zhenyu Wu, Di He, Shibo Chen, Jiming Ranjan, Rajiv Zhejiang University State Key Laboratory of Industrial Control Technology Hangzhou China Zhejiang University of Technology Institute of Cyberspace Security College of Information Engineering Hangzhou China University of St Andrews School of Computer Science United Kingdom Newcastle University United Kingdom
In a typical distributed Deep Learning (DL) based application, models are configured differently to meet the requirements of resource constraints. For instance, a large ResNet56 model is deployed on the cloud server w... 详细信息
来源: 评论
Resilient Formation control Based on Watermarks for Networked Quadrotors under Deception Attacks
收藏 引用
IEEE Transactions on Vehicular technology 2025年
作者: Zhan, Weiwei Miao, Zhiqiang Zeng, Jianxin Chen, Yanjie Wu, Zheng-Guang He, Wei Wang, Yaonan Hunan University College of Electrical and Information Engineering Changsha410082 China Fuzhou University School of Mechanical Engineering and Automation Fuzhou350108 China National Engineering Research Center of Robot Visual Perception and Control Technology Changsha410082 China Zhejiang University Institute of Cyber-Systems and Control Hangzhou310027 China University of Science and Technology Beijing Key Laboratory of Intelligent Bionic Unmanned Systems Ministry of Education School of Intelligence Science and Technology Institute of Artificial Intelligence Beijing100083 China
This article addresses the problem of formation control of networked UAVs under deception attacks. A lightweight resilient formation control framework based on watermarks is proposed to achieve the desired formation c... 详细信息
来源: 评论
Target Defense with Multiple Defenders and an Agile Attacker via Residual Policy Learning
arXiv
收藏 引用
arXiv 2025年
作者: Tao, Jiyue Shen, Tongsheng Zhao, Dexin Zhang, Feitian Robotics and Control Laboratory Department of Advanced Manufacturing and Robotics College of Engineering and the State Key Laboratory of Turbulence and Complex Systems Peking University Beijing100871 China National Innovation Institute of Defense Technology Beijing100071 China
The target defense problem involves intercepting an attacker before it reaches a designated target region using one or more defenders. This letter focuses on a particularly challenging scenario in which the attacker i... 详细信息
来源: 评论
A framework of day-ahead wind supply power forecasting by risk scenario perception
收藏 引用
IEEE Transactions on Sustainable Energy 2025年
作者: Yang, Mao Huang, Yutong Wang, Zhao Wang, Bo Su, Xin Northeast Electric Power University Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology Ministry of Education Jilin132012 China China Electric Power Research Institute State Key Laboratory of Operation and Contr Ol of Renewable Energy & Storage Systems Beijing100912 China
Wind power forecasting (WPF) systems are essential to maintain the safe and stable operation of the power system in case of large-scale grid-connected wind farms. However, the current forecasting has the problem of di... 详细信息
来源: 评论
Brain-Conditional Multimodal Synthesis: A Survey and Taxonomy
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2025年 第5期6卷 1080-1099页
作者: Mai, Weijian Zhang, Jian Fang, Pengfei Zhang, Zhijun South China University of Technology School of Automation Science and Engineering Guangzhou510640 China Southeast University School of Computer Science and Engineering Nanjing210096 China South China University of Technology Key Library of Autonomous Systems and Network Control Ministry of Education The School of Automation Science and Engineering Guangzhou510640 China Institute for Super Robotics Huangpu Guangzhou510555 China Nanchang University Jiangxi Thousand Talents Plan Nanchang330031 China Jishou University College of Computer Science and Engineering Jishou416000 China Guangdong Artificial Intelligence and Digital Economy Laboratory Pazhou Lab Guangzhou510335 China Shaanxi University of Technology Shaanxi Provincial Key Laboratory of Industrial Automation School of Mechanical Engineering Hanzhong723001 China Changsha Normal University School of Information Science and Engineering Changsha410100 China Guangdong University of Petrochemical Technology School of Automation Science and Engineering Institute of Artificial Intelligence and Automation Maoming525000 China
In the era of artificial intelligence generated content (AIGC), conditional multimodal synthesis technologies (e.g., text-to-image) are dynamically reshaping the natural content. Brain signals, serving as potential re... 详细信息
来源: 评论
Modeling of distributed parameter systems based on independent partial derivative-physics-informed neural network
收藏 引用
Neurocomputing 2025年 642卷
作者: Wang, Lijie Lin, Yangshu Yan, Xinrong Shao, Yuhao Xu, Zuhua Yang, Chao Fan, Haidong Xie, Yurong Zheng, Chenghang State Key Lab of Clean Energy Utilization Institute of Carbon Neutrality State Environmental Protection Engineering Center for Coal-Fired Air Pollution Control Zhejiang University Hangzhou310027 China State Key Laboratory of Industrial Control Technology College of Control Science and Engineering Zhejiang University Hangzhou310027 China Zhejiang Baima Lake Laboratory Co. Ltd. Hangzhou310051 China Huadian Electric Power Research Institute Co. Ltd. Hangzhou310030 China
Physics-informed neural networks (PINNs) have attracted considerable interest due to their capacity to incorporate established physical principles, thus facilitating efficient training with a limited amount of observe... 详细信息
来源: 评论