咨询与建议

限定检索结果

文献类型

  • 443 篇 会议
  • 226 篇 期刊文献

馆藏范围

  • 669 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 489 篇 工学
    • 213 篇 控制科学与工程
    • 188 篇 软件工程
    • 162 篇 计算机科学与技术...
    • 160 篇 机械工程
    • 68 篇 仪器科学与技术
    • 57 篇 电气工程
    • 40 篇 电子科学与技术(可...
    • 38 篇 航空宇航科学与技...
    • 35 篇 信息与通信工程
    • 32 篇 交通运输工程
    • 23 篇 动力工程及工程热...
    • 21 篇 力学(可授工学、理...
    • 16 篇 生物工程
    • 14 篇 安全科学与工程
    • 13 篇 土木工程
    • 12 篇 化学工程与技术
    • 12 篇 生物医学工程(可授...
    • 8 篇 建筑学
    • 7 篇 兵器科学与技术
    • 6 篇 光学工程
  • 195 篇 理学
    • 120 篇 数学
    • 70 篇 系统科学
    • 26 篇 统计学(可授理学、...
    • 25 篇 物理学
    • 20 篇 生物学
    • 8 篇 化学
    • 7 篇 地球物理学
  • 101 篇 管理学
    • 96 篇 管理科学与工程(可...
    • 17 篇 工商管理
  • 13 篇 军事学
  • 9 篇 经济学
    • 9 篇 应用经济学
  • 8 篇 医学
  • 5 篇 法学
  • 3 篇 农学
  • 3 篇 艺术学

主题

  • 15 篇 legged locomotio...
  • 13 篇 trajectory
  • 13 篇 robot kinematics
  • 13 篇 mathematical mod...
  • 12 篇 target tracking
  • 12 篇 uncertainty
  • 12 篇 robustness
  • 11 篇 force
  • 11 篇 stability analys...
  • 11 篇 optimization
  • 11 篇 feature extracti...
  • 11 篇 training
  • 10 篇 image segmentati...
  • 10 篇 planning
  • 10 篇 cameras
  • 10 篇 real-time system...
  • 9 篇 networked contro...
  • 9 篇 object detection
  • 9 篇 roads
  • 9 篇 three-dimensiona...

机构

  • 183 篇 school of automa...
  • 56 篇 state key labora...
  • 46 篇 key laboratory o...
  • 37 篇 state key labora...
  • 35 篇 state key labora...
  • 27 篇 key laboratory o...
  • 25 篇 key laboratory o...
  • 24 篇 key laboratory o...
  • 21 篇 beijing institut...
  • 20 篇 key laboratory o...
  • 20 篇 key laboratory o...
  • 19 篇 state key labora...
  • 13 篇 education minist...
  • 12 篇 key laboratory o...
  • 12 篇 nanjing universi...
  • 12 篇 key laboratory o...
  • 11 篇 school of automa...
  • 9 篇 qingdao academy ...
  • 8 篇 state key labora...
  • 8 篇 school of automa...

作者

  • 62 篇 junzheng wang
  • 54 篇 chen jie
  • 52 篇 jie chen
  • 24 篇 hongbin ma
  • 24 篇 qiang huang
  • 24 篇 jian sun
  • 22 篇 jing li
  • 21 篇 chen chen
  • 18 篇 fu mengyin
  • 18 篇 wang junzheng
  • 16 篇 yang yi
  • 16 篇 sun jian
  • 16 篇 yi yang
  • 15 篇 zhihong peng
  • 15 篇 meiling wang
  • 15 篇 xin bin
  • 15 篇 zhangguo yu
  • 15 篇 lihua dou
  • 14 篇 shoukun wang
  • 14 篇 xiangdong liu

语言

  • 618 篇 英文
  • 50 篇 中文
  • 2 篇 其他
检索条件"机构=State Key Laboratory of Intelligent Control and Decision of Complex System"
669 条 记 录,以下是1-10 订阅
排序:
Conditional Diffusion Model for Skeleton-based Gesture Recognition with Severe Occlusions
收藏 引用
IEEE Signal Processing Letters 2025年 32卷 1970-1974页
作者: Liu, Jinting Gan, Minggang Du, Yao Guan, keyi Guo, Jia Beijing Institute of Technology Key Laboratory of Complex System Intelligent Control and Decision School of Automation Beijing China
In the field of skeleton-based gesture recognition, occlusion remains a significant challenge, significantly degrading performance when key joints are occluded or disturbed. To tackle this issue, we propose DiffTrans,... 详细信息
来源: 评论
Model and Simulation of Multipath Error in DLL for GPS Receiver
收藏 引用
Chinese Journal of Electronics 2025年 第3期23卷 508-515页
作者: Lan Cheng Jie Chen Gang Xie Taiyuan University of Technology Taiyuan China Education Ministry Key Laboratory of Complex System Intelligent Control and Decision Beijing Institute of Technology Beijing China
Although different multipath error models of Delay lock loop (DLL) used in GPS receiver are established, they have never been put together for comparison. Furthermore, no universal simulation method is developed to ge... 详细信息
来源: 评论
Influence Enhanced Sparse Coordination Graphs for Multi-Agent Reinforcement Learning
收藏 引用
Neural Networks 2025年 188卷 107454页
作者: Zhang, Xiwen Chen, Jie Gan, Ming-Gang Chen, Haoxiang State Key Laboratory of Intelligent Control and Decision of Complex Systems School of Automation Beijing Institute of Technology Beijing100081 China
In contemporary Multi-Agent Reinforcement Learning (MARL), effectively enhancing the expressive capacity of value functions has been a persistent research focus. Many studies have employed value decomposition methods;... 详细信息
来源: 评论
Multi-agent reinforcement learning system framework based on topological networks in Fourier space
收藏 引用
Applied Soft Computing 2025年 174卷
作者: Sun, Licheng Ding, Ao Ma, Hongbin School of Automation Beijing Institute of Technology Beijing100081 China Key Laboratory of Complex System Intelligent Control and Decision Beijing Institute of Technology Beijing100081 China
Currently, multi-agent reinforcement learning (MARL) has been applied to various domains such as communications, network management, power systems, and autonomous driving, showcasing broad application scenarios and si... 详细信息
来源: 评论
Data-Driven Learning and control with Event-Triggered Measurements
收藏 引用
IEEE Transactions on Automatic control 2025年
作者: Feng, Shilun Shi, Dawei Chen, Tongwen Shi, Ling Beijing Institute of Technology State Key Laboratory of Intelligent Control and Decision of Complex Systems MIIT Key Laboratory of Servo Motion System Drive and Control School of Automation Beijing100081 China University of Alberta Department of Electrical and Computer Engineering EdmontonABT6G 1H9 Canada Hong Kong University of Science and Technology Department of Electronic and Computer Engineering Clear Water Bay Kowloon Hong Kong
Event-triggered control has attracted considerable attention for its effectiveness in resource-restricted applications. To make event-triggered control as an end-to-end solution, a key issue is how to effectively lear... 详细信息
来源: 评论
Identify influential nodes in directed networks: A neighborhood entropy-based method
收藏 引用
Chaos, Solitons and Fractals 2025年 197卷
作者: Dong, Ang Feng, Ru Qiu, Lipeng Wu, Yali Ren, Yuanguang Zhou, Aoran Department of Information and Control Engineering Xi'an University of Technology Xi'an710048 China Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing Xi'an University of Technology Xi'an710048 China State Key Laboratory of Metal Extrusion and Forging Equipment Technology China National Heavy Machinery Research Institute Co. Ltd Xi'an710016 China
The identification of influential nodes in complex networks is prominent and actively researched topic, with applications across various fields. Despite the emergence of numerous methods, many of these are inadequate ... 详细信息
来源: 评论
Hybrid optimization of dynamic deployment for networked fire control system
收藏 引用
Journal of systems Engineering and Electronics 2013年 第6期24卷 954-961页
作者: Chen Chen Jie Chen Bin Xin School of Automation Beijing Institute of Technology Key Laboratory of Complex System Intelligent Control and Decision Ministry of Education
With applying the information technology to the military field, the advantages and importance of the networked combat are more and more obvious. In order to make full use of limited battlefield resources and maximally... 详细信息
来源: 评论
Trajectory synchronization of multi-cylinder electrohydraulic lift system with huge load
收藏 引用
Journal of Beijing Institute of Technology 2013年 第2期22卷 228-234页
作者: 何玉东 王军政 李静 赵江波 Key Laboratory of Intelligent Control and Decision of Complex System Beijing Institute of Technology
A kind of four degree-of-freedom (DOF) electrohydraulic lift system is studied in this pa- per, after analyzing the motion characteristics and the mathematic model of the hydraulic cylinders, a cross-coupled synchro... 详细信息
来源: 评论
Effective approach for outdoor obstacle detection by clustering LIDAR data context
收藏 引用
Journal of Beijing Institute of Technology 2016年 第4期25卷 483-490页
作者: 王军政 乔佳楠 李静 Key Laboratory of Intelligent Control and Decision of Complex System Beijing Institute of Technology
A method of environment mapping using laser-based light detection and ranging (LIDAR) is proposed in this paper. This method not only has a good detection performance in a wide range of detection angles, but also fa... 详细信息
来源: 评论
Motion Planning Method for Obstacle Avoidance of 6-DOF Manipulator Based on Improved A* Algorithm
收藏 引用
Journal of Donghua University(English Edition) 2015年 第1期32卷 79-85页
作者: 汪首坤 朱磊 Key Laboratory of Intelligent Control and Decision for Complex System Beijing Institute of Technology
The conventional A* algorithm may suffer from the infinite loop and a large number of search data in the process of motion planning for manipulator. To solve the problem,an improved A* algorithm is proposed in this pa... 详细信息
来源: 评论