A model-based offline policy iteration(PI) algorithm and a model-free online Q-learning algorithm are proposed for solving fully cooperative linear quadratic dynamic games. The PI-based adaptive Q-learning method can ...
详细信息
A model-based offline policy iteration(PI) algorithm and a model-free online Q-learning algorithm are proposed for solving fully cooperative linear quadratic dynamic games. The PI-based adaptive Q-learning method can learn the feedback Nash equilibrium online using the state samples generated by behavior policies, without sending inquiries to the system model. Unlike the existing Q-learning methods, this novel Q-learning algorithm executes both policy evaluation and policy improvement in an adaptive *** prove the convergence of the offline PI algorithm by proving its equivalence to Newton's method while solving the game algebraic Riccati equation(GARE). Furthermore, we prove that the proposed Q-learning method will converge to the Nash equilibrium under a small learning rate if the method satisfies certain persistence of excitation conditions, which can be easily met by suitable behavior policies. Our simulation results demonstrate the good performance of the proposed online adaptive Q-learning algorithm.
Agile satellites are of importance in modern aerospace applications, but high mobility of the satellites may cause them vulnerable to saturation during attitude maneuvers due to limited rating of actuators, This paper...
详细信息
Agile satellites are of importance in modern aerospace applications, but high mobility of the satellites may cause them vulnerable to saturation during attitude maneuvers due to limited rating of actuators, This paper proposes a near minimum-time feedback control law for the agile satellite attitude controlsystem. The feedback controller is formed by specially designed cascaded sub-units. The rapid dynamic response of the modified Bang Bang control logic achieves the near optimal property and ensures the non-saturation properties on three-axis. To improve the dynamic performance, a model reference control strategy is proposed, in which the oniline near optimal attitude maneuver path is generated by the cascade controller and is then tracked by a nonlinear back-stepping controller. Furthermore, the accuracy and the robustness of the controlsystem are achieved by momentum-based on-line inertial identification. The rapid attitude maneuvering can be applied for tasks including the move to move case. Numerical simulations are conducted to verify the effectiveness of the proposed control strategy in terms of the saturation-free property and rapidness.
In order to compromise the conflicts between control accuracy and system efficiency of conventional electro-hydraulic servo systems,a novel pump-valve coordinated electro-hydraulic servo system was designed and a corr...
详细信息
In order to compromise the conflicts between control accuracy and system efficiency of conventional electro-hydraulic servo systems,a novel pump-valve coordinated electro-hydraulic servo system was designed and a corresponding control strategy was *** system was constituted of a pumpcontrolled part and a valve-controlled part,the pump controlled part is used to adjust the flow rate of oil source and the valve controlled part is used to complete the position tracking control of the hydraulic *** on the system characteristics,a load flow grey prediction method was adopted in the pump controlled part to reduce the system overflow losses,and an adaptive robust control method was adopted in the valve controlled part to eliminate the effect of system nonlinearity and parametric uncertainties due to variable hydraulic parameters and system loads on the control *** experimental results validated that the adopted control strategy increased the system efficiency obviously with guaranteed high control accuracy.
The position tracking control problem of an electrical cylinder in the presence of dynamic friction nonlinearities in its transmission process is addressed in this paper. First, a torque decou- piing approach is propo...
详细信息
The position tracking control problem of an electrical cylinder in the presence of dynamic friction nonlinearities in its transmission process is addressed in this paper. First, a torque decou- piing approach is proposed to formulate the dynamic model. Secondly, to compensate the friction in the case of servo motion, a modified LuGre model is designed to make a continuous transition be- tween a static model at a high speed and a LuGre model at a low speed to avoid instability due to dis- cretization with a finite sampling rate. To accelerate the speed of estimating time-varying parame- ters, a fast adaption law is proposed by designing an attraction domain around a rough value related to the load force. Finally, a discontinuous projection based adaptive robust controller is synthesized to effectively handle parametric uncertainties for ensuring a guaranteed robust performance. A Lya- punov stability analysis demonstrates that all signals including tracking errors have the guaranteed convergent and bounded performance. Extensive comparative simulations with sinusoidal and point- point tracks are obtained respectively in low and high speeds. The results show the effectiveness and the achievable control performance of the proposed control strategy.
In order to solve kinematic redundancy problems of a hydraulic quadruped walking robot,which include leg dragging,sliding,impingement against the ground,an improved gait planning algorithm for this robot is proposed i...
详细信息
In order to solve kinematic redundancy problems of a hydraulic quadruped walking robot,which include leg dragging,sliding,impingement against the ground,an improved gait planning algorithm for this robot is proposed in this ***,the foot trajectory is designated as the improved composite cycloid foot ***,the landing angle of each leg of the robot is controlled to satisfy friction cone to improve the stability performance of the *** with the controllable landing angle of quadruped robot and a geometry method,the kinematic equation is derived in this ***,agait planning method of quadruped robot is proposed,a dynamic co-simulation is done with ADAMS and MATLAB,and practical experiments are *** validity of the proposed algorithm is confirmed through the co-simulation and *** results show that the robot can avoid sliding,reduce impingement,and trot stably in trot gait.
Most existing legged robots are developed under laboratory environments and, corre- spondingly, have good performance of locomotion. The robots' ability of walking on rough terrain is of great importance but is seldo...
详细信息
Most existing legged robots are developed under laboratory environments and, corre- spondingly, have good performance of locomotion. The robots' ability of walking on rough terrain is of great importance but is seldom achieved. Being compliant to external unperceived impacts is cru- cial since it is unavoidable that the slip, modeling errors and imprecise information of terrain will make planned trajectories to be followed with errors and unpredictable contacts. The impedance control gives an inspiration to realize an active compliance which allows the legged robots to follow reference trajectories and overcome external disturbances. In this paper, a novel impedance force/ position control scheme is presented, which is based on Cartesian force measurement of leg' s end effector for our hydraulic quadruped robot The simulation verifies the efficiency of the impedance model, and the experimental results at the end demonstrate the feasibility of the proposed control scheme.
In order to solve the linear variable differential transformer (LVDT) displacement sensor nonlinearity of overall range and extend its working range, a novel line-element based adaptively seg- menting method for pie...
详细信息
In order to solve the linear variable differential transformer (LVDT) displacement sensor nonlinearity of overall range and extend its working range, a novel line-element based adaptively seg- menting method for piecewise compensating correction was proposed. According to the mechanical structure of LVDT, the output equation was calculated, and then the theoretic nonlinear source of output was analyzed. By the proposed line-element adaptive segmentation method, the nonlinear output of LVDT was divided into linear and nonlinear regions with a given threshold. Then the com- pensating correction function was designed for nonlinear parts employing polynomial regression tech- nique. The simulation of LVDT validates the feasibility of proposed scheme, and the results of cali- bration and testing experiments fully prove that the proposed method has higher accuracy than the state-of-art correction algorithms.
In order to meet the application requirements of autonomous vehicles, this paper proposes a simultaneous localization and mapping (SLAM) algorithm, which uses a VoxelGrid filter to down sample the point cloud data, ...
详细信息
In order to meet the application requirements of autonomous vehicles, this paper proposes a simultaneous localization and mapping (SLAM) algorithm, which uses a VoxelGrid filter to down sample the point cloud data, with the combination of iterative closest points (ICP) algorithm and Gaussian model for particles updating, the matching between the local map and the global map to quantify particles' importance weight. The crude estimation by using ICP algorithm can find the high probability area of autonomous vehicles' poses, which would decrease particle numbers, increase algorithm speed and restrain particles' impoverishment. The calculation of particles' importance weight based on matching of attribute between grid maps is simple and practicable. Experiments carried out with the autonomous vehicle platform validate the effectiveness of our approaches.
A plant-friendly proportional-integral-derivative (PID) controller optimization framework is proposed to make tradeoffs among set-point response,controller output variations and *** objective function is chosen as t...
详细信息
A plant-friendly proportional-integral-derivative (PID) controller optimization framework is proposed to make tradeoffs among set-point response,controller output variations and *** objective function is chosen as the weighted sum of the integral of squared time-weighted error and the integral of squared timeweighted derivative of the control variable with respect to set-point response,while the robustness of the system is guaranteed by constraints on gain and phase *** to the complex structure of the constraints,the problem is solved by genetic *** analysis show the proposed method could efficiently reduce the controller output variations while maintaining a short settling *** on the simulation results,iterative tuning rules for the weighting factor in the objective function are obtained,which allows efficient simple proportional-integral(PI) tuning formulae to be derived.
With the continuous growth of the automobile trade, the inefficiency of traditional cargo transshipment in Roll-On/Roll-Off (RO/RO) terminals has become increasingly pronounced. As a result, the adoption of autonomous...
详细信息
暂无评论