咨询与建议

限定检索结果

文献类型

  • 1,350 篇 会议
  • 604 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 1,956 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,271 篇 工学
    • 657 篇 计算机科学与技术...
    • 623 篇 软件工程
    • 504 篇 控制科学与工程
    • 304 篇 机械工程
    • 148 篇 仪器科学与技术
    • 132 篇 交通运输工程
    • 130 篇 生物工程
    • 115 篇 电气工程
    • 115 篇 信息与通信工程
    • 66 篇 生物医学工程(可授...
    • 57 篇 光学工程
    • 54 篇 电子科学与技术(可...
    • 39 篇 化学工程与技术
    • 34 篇 动力工程及工程热...
    • 34 篇 安全科学与工程
    • 24 篇 力学(可授工学、理...
  • 487 篇 理学
    • 267 篇 数学
    • 142 篇 系统科学
    • 124 篇 生物学
    • 92 篇 统计学(可授理学、...
    • 86 篇 物理学
    • 28 篇 化学
  • 369 篇 管理学
    • 318 篇 管理科学与工程(可...
    • 78 篇 工商管理
    • 52 篇 图书情报与档案管...
  • 72 篇 医学
    • 56 篇 临床医学
    • 39 篇 基础医学(可授医学...
    • 28 篇 药学(可授医学、理...
  • 50 篇 法学
    • 42 篇 社会学
  • 30 篇 经济学
    • 30 篇 应用经济学
  • 24 篇 农学
  • 17 篇 教育学
  • 15 篇 艺术学
  • 11 篇 文学
  • 6 篇 军事学
  • 1 篇 历史学

主题

  • 92 篇 training
  • 74 篇 feature extracti...
  • 57 篇 computational mo...
  • 54 篇 reinforcement le...
  • 51 篇 neural networks
  • 46 篇 optimal control
  • 44 篇 mathematical mod...
  • 38 篇 automation
  • 36 篇 robot kinematics
  • 35 篇 task analysis
  • 35 篇 trajectory
  • 34 篇 deep learning
  • 34 篇 vehicles
  • 32 篇 visualization
  • 31 篇 predictive model...
  • 30 篇 adaptive dynamic...
  • 30 篇 robots
  • 30 篇 machine learning
  • 29 篇 data models
  • 28 篇 force

机构

  • 526 篇 state key labora...
  • 235 篇 the state key la...
  • 183 篇 school of artifi...
  • 140 篇 university of ch...
  • 127 篇 state key labora...
  • 100 篇 the state key la...
  • 85 篇 qingdao academy ...
  • 80 篇 state key labora...
  • 79 篇 school of automa...
  • 62 篇 ieee
  • 56 篇 state key labora...
  • 55 篇 the state key la...
  • 52 篇 school of automa...
  • 43 篇 state key labora...
  • 36 篇 state key labora...
  • 35 篇 state key labora...
  • 33 篇 beijing engineer...
  • 29 篇 hubei key labora...
  • 28 篇 the school of ar...
  • 26 篇 institute of aut...

作者

  • 190 篇 fei-yue wang
  • 110 篇 wang fei-yue
  • 92 篇 gang xiong
  • 62 篇 min tan
  • 57 篇 zeng-guang hou
  • 56 篇 derong liu
  • 52 篇 qinglai wei
  • 49 篇 xiong gang
  • 46 篇 yisheng lv
  • 46 篇 fenghua zhu
  • 45 篇 dongbin zhao
  • 43 篇 zhao dongbin
  • 42 篇 junzhi yu
  • 38 篇 tan min
  • 37 篇 xiao wang
  • 36 篇 wei qinglai
  • 35 篇 liu derong
  • 33 篇 daniel zeng
  • 33 篇 long cheng
  • 31 篇 xisong dong

语言

  • 1,844 篇 英文
  • 74 篇 其他
  • 39 篇 中文
  • 1 篇 法文
检索条件"机构=State Key Laboratory of Intelligent Control and Management of Complex Systems"
1956 条 记 录,以下是1241-1250 订阅
排序:
Self adaptation of chimera states
arXiv
收藏 引用
arXiv 2018年
作者: Yao, Nan Huang, Zi-Gang Ren, Hai-Peng Grebogi, Celso Lai, Ying-Cheng Department of Applied Physics Xi’an University of Technology Xi’an710048 China School of Life Science and Technology Xi’an Jiao Tong University Xi’an710049 China Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing Xi’an University of Technology Xi’an710048 China Institute for Complex Systems and Mathematical Biology King’s College University of Aberdeen AberdeenAB24 3UE United Kingdom School of Electrical Computer and Energy Engineering Arizona State University TempeAZ85287 United States Department of Physics Arizona State University TempeAZ85287 United States
Chimera states in spatiotemporal dynamical systems have been investigated in physical, chemical, and biological systems, and have been shown to be robust against random perturbations. How do chimera states achieve the... 详细信息
来源: 评论
Bifurcation behaviors of an Euler discretized inertial delayed neuron model
收藏 引用
Science China(Technological Sciences) 2016年 第3期59卷 418-427页
作者: HE Xing LI ChuanDong HUANG TingWen YU JunZhi School of Electronics and Information Engineering Southwest University Chongqing 400715 China Texas A & M University at Qatar Doha 5825 Qatar State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences Beijing 100190 China
This paper presents an Euler discretized inertial delayed neuron model, and its bifurcation dynamical behaviors are discussed. By using the associated characteristic model, center manifold theorem and the normal form ... 详细信息
来源: 评论
control 5.0: From Newton to Merton in Popper's Cyber-Social-Physical Spaces
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2016年 第3期3卷 233-234页
作者: Fei-Yue Wang IEEE State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences (SKL-MCCS CASIA) Research Center of Computational Experiments and Parallel Systems The National University of Defense Technology
The future of control in cyberspace of parallel worlds is discussed. It argues for the coming age of control 5.0,the control technology for the new IT capable of dealing with artificial worlds with VR, AR, AI and robo... 详细信息
来源: 评论
Who will win practical artificial intelligence? AI engineerings in China
arXiv
收藏 引用
arXiv 2017年
作者: Wu, Huai-Yu Wang, Feiyue Pan, Chunhong National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences Beijing100190 China
Currently, Artificial Intelligence (AI) has won unprecedented attention and is becoming the increasingly popular focus in China. This change can be judged by the impressive record of academic publications, the amount ... 详细信息
来源: 评论
Data-based robust near-optimal decentralized stabilization of unknown large-scale systems
Data-based robust near-optimal decentralized stabilization o...
收藏 引用
IEEE Symposium Series on Computational Intelligence (SSCI)
作者: Bo Zhao Derong Liu Yuanchun Li State Key Laboratory of Management and Control for Complex Systems Chinese Academy of Sciences Beijing China School of Automation Guangdong University of Technology Guangzhou China Department of Control Science and Engineering Changchun University of Technology Changchun China
This paper investigates a data-based robust decentralized stabilizing control scheme for unknown large-scale systems via adaptive critic designs. The control consists of near-optimal stabilizing control and adaptive r... 详细信息
来源: 评论
Neural Adaptive control of Microgrid Frequency Regulation with Wind Power
Neural Adaptive Control of Microgrid Frequency Regulation wi...
收藏 引用
Annual Conference of the IEEE Industrial Electronics Society
作者: Weiqiang Liu Chaoxu Mu Ding Wang Chao Luo Chao Ren Tianjin Key Laboratory of Process Measurement and Control Tianjin University Tianjin China School of Automation Southeast University Nanjing China The State Key Laboratory of Management and Control for Complex Systems Chinese Academy of Sciences Beijing China School of Electrical Engineering Wuhan University Wuhan China
Due to the uncertainty of power load demand and the stochastic power generation from renewable energy, frequency fluctuation becomes a major concern of power system, especially for a microgrid. In this paper, an impro... 详细信息
来源: 评论
Traffic Signal Timing via Deep Reinforcement Learning
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2016年 第3期3卷 247-254,254+248-253页
作者: Li Li Yisheng Lv Fei-Yue Wang IEEE Department of Automation Tsinghua University Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences
In this paper, we propose a set of algorithms to design signal timing plans via deep reinforcement learning. The core idea of this approach is to set up a deep neural network (DNN) to learn the Q-function of reinforce... 详细信息
来源: 评论
3D Attention Network(3DAN)to Capture Candidate Biomarkers for Alzheimer's Disease
3D Attention Network(3DAN)to Capture Candidate Biomarkers fo...
收藏 引用
2019中国阿尔茨海默病论坛(中国脑病大会CCBD2019)
作者: Dan Jin Bo Zhou Ying Han Jiaji Ren Tong Han Bing Liu Jie Lu Chengyuan Song Pan Wang Dawei Wang Jian Xu Zhengyi Yang Hongxiang Yao Chunshui Yu Kun Zhao Xinqing Zhang Yuying Zhou Xi Zhang Tianzi Jiang Qing Wang Yong Liu Brainnetome Center&National Laboratory of Pattern Recognition Institute of AutomationChinese Academ Department of Neurology the Second Medical CentreNational Clinical Research Centre for Geriatric Di Department of Neurology Xuanwu Hospital of Capital Medical UniversityBeijingChina Center of Alzhei Department of Radiology Tianjin Huanhu HospitalTianjinChina Brainnetome Center&National Laboratory of Pattern Recognition Institute of AutomationChinese Academ Department of Radiology Xuanwu Hospital of Capital Medical UniversityBeijingChina Department of Neurology Qilu Hospital of Shandong UniversityJi'nanChina Department of Neurology Tianjin Huanhu HospitalTianjinChina Department of Radiology Qilu Hospital of Shandong UniversityJi'nanChina State Key Laboratory of Management and Control for Complex Systems Institute of AutomationChinese A Department of Radiology Chinese PLA General HospitalBeijingChina Department of Radiology Tianjin Medical University General HospitalTianjinChina Brainnetome Center&National Laboratory of Pattern Recognition Institute of AutomationChinese Academ Department of Neurology Xuanwu Hospital of Capital Medical UniversityBeijingChina Alzheimer's Disease Neuroimaging Initiative Multi-Centre Alzheimer Disease Neuroimaging Working Group
Brain structural alterations are promising biomarkers for tracking disease progression and diagnosing Alzheimer's disease(AD).Deep learning methods have been increasingly used for computer-aided diagnosis of AD du... 详细信息
来源: 评论
12.2: A 3D Display Parallel System: Light Field Re-rendering and Depth Sense Optimization
收藏 引用
SID Symposium Digest of Technical Papers 2018年 第S1期49卷
作者: Renjing Pei Kui Ma Feiyue Wang State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences East Zhongguanchun Road No. 95 Haidian District Beijing School of Computer and Control Engineering University of Chinese Academy of Sciences Beijing Parallel Optics Technology Innovation Center Qingdao Academy of Intelligent Industries Qingdao
The main benefit of 3D display over 2D display is the obvious ability to create a more lifelike character with high depth sense. However, the limitation of human eye's visual mechanism, unartful 3D scene structure... 详细信息
来源: 评论
Reaching a stochastic consensus in the noisy networks of linear MIMO agents:Dynamic output-feedback and convergence rate
收藏 引用
Science China(Technological Sciences) 2016年 第1期59卷 45-54页
作者: WANG YunPeng CHENG Long YANG ChenGuang HOU ZengGuang TAN Min State Key Laboratory of Management and Control for Complex Systems Institute of AutomationChinese Academy of SciencesBeijing 100190China Plymouth University Plymouth PL48ABUnited Kingdom College of Automation Science and Engineering South China University of TechnologyGuangzhou 510640China
This paper addresses the leader-following consensus problem of linear multi-agent systems(MASs) with communication noise. Each agent's dynamical behavior is described by a linear multi-input and multi-output(MIMO)... 详细信息
来源: 评论