咨询与建议

限定检索结果

文献类型

  • 633 篇 会议
  • 603 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 1,237 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 838 篇 工学
    • 344 篇 计算机科学与技术...
    • 312 篇 软件工程
    • 237 篇 控制科学与工程
    • 148 篇 机械工程
    • 135 篇 电气工程
    • 111 篇 信息与通信工程
    • 98 篇 电子科学与技术(可...
    • 76 篇 仪器科学与技术
    • 67 篇 生物工程
    • 58 篇 材料科学与工程(可...
    • 57 篇 化学工程与技术
    • 56 篇 光学工程
    • 53 篇 生物医学工程(可授...
    • 49 篇 动力工程及工程热...
    • 42 篇 交通运输工程
    • 36 篇 力学(可授工学、理...
    • 26 篇 航空宇航科学与技...
    • 23 篇 土木工程
  • 471 篇 理学
    • 241 篇 数学
    • 141 篇 物理学
    • 82 篇 系统科学
    • 78 篇 生物学
    • 67 篇 统计学(可授理学、...
    • 46 篇 化学
    • 24 篇 地球物理学
  • 167 篇 管理学
    • 125 篇 管理科学与工程(可...
    • 46 篇 图书情报与档案管...
    • 23 篇 工商管理
  • 42 篇 医学
    • 34 篇 临床医学
    • 23 篇 基础医学(可授医学...
  • 15 篇 经济学
  • 12 篇 法学
  • 11 篇 农学
  • 6 篇 军事学
  • 4 篇 艺术学
  • 2 篇 教育学
  • 1 篇 文学

主题

  • 76 篇 laboratories
  • 66 篇 intelligent syst...
  • 49 篇 automation
  • 32 篇 feature extracti...
  • 24 篇 computer science
  • 22 篇 support vector m...
  • 20 篇 machine learning
  • 19 篇 reinforcement le...
  • 19 篇 deep learning
  • 18 篇 image segmentati...
  • 18 篇 face recognition
  • 17 篇 optimization
  • 17 篇 data mining
  • 16 篇 neural networks
  • 16 篇 information scie...
  • 16 篇 robustness
  • 16 篇 training
  • 15 篇 semantics
  • 14 篇 learning systems
  • 14 篇 navigation

机构

  • 50 篇 department of au...
  • 48 篇 state key labora...
  • 41 篇 university of ch...
  • 36 篇 school of automa...
  • 33 篇 department of au...
  • 30 篇 department of au...
  • 28 篇 state key labora...
  • 26 篇 state key labora...
  • 26 篇 state key labora...
  • 23 篇 institutes for r...
  • 22 篇 ieee
  • 21 篇 qingdao academy ...
  • 20 篇 school of artifi...
  • 18 篇 state key labora...
  • 17 篇 state key labora...
  • 16 篇 key laboratory o...
  • 15 篇 state key labora...
  • 14 篇 state key labora...
  • 14 篇 department of me...
  • 13 篇 school of mechan...

作者

  • 45 篇 changshui zhang
  • 29 篇 zhang changshui
  • 22 篇 jie zhou
  • 21 篇 wang hesheng
  • 20 篇 wu xinyu
  • 20 篇 gao feifei
  • 17 篇 fei-yue wang
  • 14 篇 xinyu wu
  • 13 篇 zhang xianda
  • 12 篇 wang can
  • 11 篇 wen-kai lu
  • 11 篇 chen chen
  • 11 篇 wang guangming
  • 11 篇 yu kang
  • 10 篇 shi dawei
  • 10 篇 hesheng wang
  • 10 篇 zengqi sun
  • 10 篇 wang fei-yue
  • 10 篇 yi yang
  • 10 篇 gang xiong

语言

  • 1,141 篇 英文
  • 58 篇 其他
  • 39 篇 中文
检索条件"机构=State Key Laboratory of Intelligent Technology and System Department of Automation"
1237 条 记 录,以下是1201-1210 订阅
排序:
A force feedback system based on robot control
A force feedback system based on robot control
收藏 引用
World Congress on intelligent Control and automation (WCICA)
作者: Yang Zehong Jia Peifa Zhao Yannan Yang Yuandong The State Key Laboratory of Intelligent Technology and System Department of Computer Science and Technology Tsinghua University Beijing China Tsinghua University Beijing Beijing CN Dept. of Comput. Sci. & Technol. Tsinghua Univ. Beijing China
This paper mainly introduces the designed force feedback system based on robot control. It first introduces the framework of the force feedback system, the higher and lower level control system, and some of the relate... 详细信息
来源: 评论
Learning bayesian networks with hidden variables using the combination of em and evolutionary algorithms  5th
收藏 引用
5th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2001
作者: Tian, Fengzhan Lu, Yuchang Shi, Chunyi The State Key Laboratory of Intelligent Technology and System The Department of Computer Science and Technology Tsinghua University Beijing100084 China
In this paper, a new method, called EM-EA, is put forward for learning Bayesian network structures from incomplete data. This method combines the EM algorithm with an evolutionary algorithm (EA) and transforms the inc... 详细信息
来源: 评论
Incremental learning of bayesian networks with hidden variables
收藏 引用
作者: Tian, Fengzhan Zhang, Hongwei Lu, Yuchang Shi, Chunyi State Key Laboratory of Intelligent Technology and System Department of Computer Science and Technology Tsinghua University 100084 Beijing China
In this paper, an incremental method for learning Bayesian networks based on evolutionary computing, IEMA, is put forward. IEMA introduces the evolutionary algorithm and EM algorithm into the process of incremental le... 详细信息
来源: 评论
Vehicle detection in static road images with PCA-and-Wavelet-Based classifier
Vehicle detection in static road images with PCA-and-Wavelet...
收藏 引用
International Conference on intelligent Transportation
作者: Junwen Wu Xuegong Zhang Jie Zhou Department of Automation State Key Laboratory of Intelligent Technology and System Tsinghua University Beijing China
Detecting vehicles from static road images is a difficult task since motion information is no longer usable. This paper presents an algorithm for this task with a pattern classifier built on the principal component an... 详细信息
来源: 评论
SVM-based detection of moving vehicles for automatic traffic monitoring
SVM-based detection of moving vehicles for automatic traffic...
收藏 引用
International Conference on intelligent Transportation
作者: Dashan Gao Jie Zhou Leping Xin Department of Automation State Key Laboratory of Intelligent Technology and System Tsinghua University Beijing China
A traffic surveillant system must be capable of working in all kinds of weather and illumination conditions, such as shadows in a sunny day, vehicle reflections in a rainy day and vehicle headlights in the evening. In... 详细信息
来源: 评论
Kernel MSE algorithm: a unified framework for KFD, LS-SVM and KRR
Kernel MSE algorithm: a unified framework for KFD, LS-SVM an...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Jianhua Xu Xuegong Zhang Yanda Li Department of Automation State Key Laboratory of Intelligent Technology and Systems Tsinghua University Beijing China
We generalize the conventional minimum squared error (MSE) method to yield a new nonlinear learning machine by using the kernel idea and adding different regularization terms. We name it kernel minimum squared error (... 详细信息
来源: 评论
Editing support vector machines
Editing support vector machines
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Haixin Ke Xuegong Zhang Department of Automation State Key Laboratory of Intelligent Technology and Systems Tsinghua University Beijing China
A support vector machine constructs an optimal hyperplane from a small set of samples near the boundary. This makes it sensitive to these specific samples and tends to result in machines either too complex with poor g... 详细信息
来源: 评论
A novel algorithm of adaptive background estimation
A novel algorithm of adaptive background estimation
收藏 引用
IEEE International Conference on Image Processing
作者: Da-shan Gao Jie Zhou Le-ping Xin State Key Laboratory of Intelligent Technology and Systems Department of Automation Tsinghua University Beijing China
We propose an adaptive background estimation algorithm for an outdoor video surveillance system. In order to enhance the ability of adaptation to illumination changes and variant noise in long-term running, an improve... 详细信息
来源: 评论
Statistical learning and analyses of Chinese ancient books for information retrieval
Statistical learning and analyses of Chinese ancient books f...
收藏 引用
IEEE International Conference on systems, Man and Cybernetics
作者: Min Zhang Shao-Ping Ma Zhe Jiang Ke Huang State Key laboratory of Intelligent Technology and System Department of Computer Science and Technology Tsinghua University Beijing China
The technique of full text retrieval for modern Chinese has been studied for a long time, but the same cannot be said for ancient Chinese books, especially in China. This paper tries to find the characteristics of Chi... 详细信息
来源: 评论
Incremental learning of Bayesian networks with hidden variables
收藏 引用
IEEE International Conference on Data Mining (ICDM)
作者: Fengzhan Tian Hongwei Zhang Yuchang Lu Chunyi Shi The State Key Laboratory of Intelligent Technology and System The Department of Computer Science and Technology Tsinghua University Beijing China
An incremental method for learning Bayesian networks based on evolutionary computing, IEMA, is put forward. IEMA introduces the evolutionary algorithm and EM algorithm into the process of incremental learning; it can ... 详细信息
来源: 评论