咨询与建议

限定检索结果

文献类型

  • 633 篇 会议
  • 589 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 1,223 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 828 篇 工学
    • 345 篇 计算机科学与技术...
    • 314 篇 软件工程
    • 235 篇 控制科学与工程
    • 142 篇 机械工程
    • 129 篇 电气工程
    • 111 篇 信息与通信工程
    • 96 篇 电子科学与技术(可...
    • 75 篇 仪器科学与技术
    • 65 篇 生物工程
    • 57 篇 光学工程
    • 57 篇 化学工程与技术
    • 55 篇 材料科学与工程(可...
    • 51 篇 生物医学工程(可授...
    • 49 篇 动力工程及工程热...
    • 42 篇 交通运输工程
    • 37 篇 力学(可授工学、理...
    • 26 篇 航空宇航科学与技...
    • 23 篇 土木工程
  • 467 篇 理学
    • 239 篇 数学
    • 141 篇 物理学
    • 81 篇 系统科学
    • 76 篇 生物学
    • 67 篇 统计学(可授理学、...
    • 46 篇 化学
    • 24 篇 地球物理学
  • 168 篇 管理学
    • 126 篇 管理科学与工程(可...
    • 46 篇 图书情报与档案管...
    • 24 篇 工商管理
  • 40 篇 医学
    • 34 篇 临床医学
    • 23 篇 基础医学(可授医学...
  • 15 篇 经济学
  • 12 篇 法学
  • 10 篇 农学
  • 6 篇 军事学
  • 4 篇 艺术学
  • 2 篇 教育学
  • 1 篇 文学

主题

  • 76 篇 laboratories
  • 66 篇 intelligent syst...
  • 49 篇 automation
  • 32 篇 feature extracti...
  • 24 篇 computer science
  • 22 篇 support vector m...
  • 20 篇 reinforcement le...
  • 19 篇 machine learning
  • 18 篇 deep learning
  • 18 篇 image segmentati...
  • 18 篇 face recognition
  • 17 篇 optimization
  • 17 篇 data mining
  • 16 篇 neural networks
  • 16 篇 information scie...
  • 16 篇 robustness
  • 16 篇 training
  • 15 篇 semantics
  • 14 篇 learning systems
  • 14 篇 navigation

机构

  • 51 篇 department of au...
  • 48 篇 state key labora...
  • 42 篇 university of ch...
  • 37 篇 school of automa...
  • 33 篇 department of au...
  • 30 篇 department of au...
  • 28 篇 state key labora...
  • 26 篇 state key labora...
  • 26 篇 state key labora...
  • 23 篇 institutes for r...
  • 22 篇 ieee
  • 21 篇 qingdao academy ...
  • 21 篇 school of artifi...
  • 18 篇 state key labora...
  • 17 篇 state key labora...
  • 16 篇 key laboratory o...
  • 15 篇 state key labora...
  • 14 篇 state key labora...
  • 14 篇 department of me...
  • 13 篇 school of mechan...

作者

  • 45 篇 changshui zhang
  • 29 篇 zhang changshui
  • 22 篇 jie zhou
  • 21 篇 wang hesheng
  • 20 篇 wu xinyu
  • 20 篇 gao feifei
  • 17 篇 fei-yue wang
  • 14 篇 xinyu wu
  • 13 篇 zhang xianda
  • 12 篇 wang can
  • 11 篇 wen-kai lu
  • 11 篇 chen chen
  • 11 篇 wang guangming
  • 10 篇 yu kang
  • 10 篇 shi dawei
  • 10 篇 hesheng wang
  • 10 篇 zengqi sun
  • 10 篇 wang fei-yue
  • 10 篇 yi yang
  • 10 篇 wang fei

语言

  • 1,124 篇 英文
  • 61 篇 其他
  • 39 篇 中文
检索条件"机构=State Key Laboratory of Intelligent Technology and System Department of Automation"
1223 条 记 录,以下是761-770 订阅
排序:
Traffic flow forecasting using a spatio-temporal bayesian network predictor
arXiv
收藏 引用
arXiv 2017年
作者: Sun, Shiliang Zhang, Changshui Zhang, Yi State Key Laboratory of Intelligent Technology and Systems Department of Automation Tsinghua University BeijingChina
A novel predictor for traffic flow forecasting, namely spatiotemporal Bayesian network predictor, is proposed. Unlike existing methods, our approach incorporates all the spatial and temporal information available in a... 详细信息
来源: 评论
A Real-time Hand Postures Estimation Method
A Real-time Hand Postures Estimation Method
收藏 引用
IEEE International Conference on Cyber technology in automation, Control, and intelligent systems
作者: Sunjie Chen Hongbin Ma Cong Han School of Automation Beijing Institute of Technology State Key Laboratory of Complex System Intelligent Control and Decision Beijing 100081 China
Hand postures can be used to achieve friendly human-machine interaction (HMI) for the advantages of simple expressions, informative instructions and unconstrained operations. However, most previous postures estimation... 详细信息
来源: 评论
Optimization Algorithms for Predictive Control Approach to Networked Bilinear systems
收藏 引用
自动化学报 2017年 第7期43卷 1234-1240页
作者: Binglin Wang Yu Kang Jiahu Qin Yanmei Li Department of Automation University of Science and Technology of China Hefei 230027 China State Key Laboratory of Fire Science Department of Automation Institute of Advanced Technology University of Science and Technology of China Hefei 230027 China and also with the Key Laboratory of Technology in Geo-Spatial Information Processing and Application System Chi- nese Academy of Sciences Beijing 100190 China Physics and Electronic Engineering Anqing Normal University Anqing 246011 China
This paper is concerned with the networked predictive control of discrete-time bilinear *** deal with the network-induced communication delay that exists in both forward channel(controller to actuator)and feedback c... 详细信息
来源: 评论
Optimal tracking cooperative control for multi-agent systems with periodic sampling via robust model predictive control approach  36
Optimal tracking cooperative control for multi-agent systems...
收藏 引用
第36届中国控制会议
作者: Bohui Wang Weisheng Chen Jingcheng Wang Bin Zhang Zhengqiang Zhang Hai Lin Bin Ma the School of Aerospace Science and Technology Xidian University the Department of Automation Shanghai Jiao Tong Universityand Key Laboratory of System Control and Information ProcessingMinistry of Education of China the Autonomous Systems and Intelligent Control international Joint Research Center Xian Technological University the Department of Electrical Engineering University of South Carolina the with the School of Engineering Qufu Normal University
This paper addresses the optimized tracking cooperative control problem for multi-agent systems with periodic sampling and directed communication topology via robust model predictive control *** proposed optimized tra... 详细信息
来源: 评论
MEMS-based Human Activity Recognition Using Smartphone  35
MEMS-based Human Activity Recognition Using Smartphone
收藏 引用
第35届中国控制会议
作者: TIAN Ya CHEN Wenjie Department of Automation Beijing Institute of Technology Key Laboratory of Complex System Intelligent Control and Decision Ministry of Education
Data mining is one hot orientation in today’s research *** activity recognition is meaningful in our daily living and is a significant aspect in data *** previously research is almost based on tri-axial *** paper pre... 详细信息
来源: 评论
Model-driven deep learning for physical layer communications
arXiv
收藏 引用
arXiv 2018年
作者: He, Hengtao Jin, Shi Wen, Chao-Kai Gao, Feifei Li, Geoffrey Ye Xu, Zongben National Mobile Communications Research Laboratory Southeast University Nanjing210096 China Institute of Communications Engineering National Sun Yat-sen University Kaohsiung804 Taiwan State Key Lab of Intelligent Technologies and Systems Tsinghua University Department of Automation Tsinghua University Beijing China School of Electrical and Computer Engineering Georgia Institute of Technology AtlantaGA30332 United States Institute for Information and System Sciences Xian Jiaotong University Xi'an710049 China
intelligent communication is gradually becoming a mainstream direction. As a major branch of machine learning, deep learning (DL) has been applied in physical layer communications and demonstrated an impressive perfor... 详细信息
来源: 评论
Image-based visual tracking of a moving target for a quadrotor
Image-based visual tracking of a moving target for a quadrot...
收藏 引用
Asian Control Conference
作者: Dongliang Zheng Hesheng Wang Weidong Chen Department of Automation Ministry of Education of China Shanghai China State Key Laboratory of Robotics and System Harbin Institute of Technology Harbin China
In this paper, the control problem of a quadrotor tracking a moving target is investigated. The method is based on image-based visual servoing (IBVS) scheme. The target is assumed to be moving with unknown, time varyi... 详细信息
来源: 评论
Model-protected multi-task learning
arXiv
收藏 引用
arXiv 2018年
作者: Liang, Jian Liu, Ziqi Zhou, Jiayu Jiang, Xiaoqian Zhang, Changshui Wang, Fei Department of Automation Tsinghua University State Key Laboratory of Intelligent Technologies and Systems Tsinghua National Laboratory for Information Science and Technology Beijing100084 China Department of Computer Science Xi'an Jiaotong University Xi'an710049 China Department of Computer Science and Engineering Michigan State University East LansingMI48824 United States Department of Biomedical Informatics University of California San Diego San DiegoCA92093 United States Department of Healthcare Policy and Research Weill Cornell Medical College New York CityNY10065 United States
Multi-task learning (MTL) refers to the paradigm of learning multiple related tasks together. In contrast, in single-task learning (STL) each individual task is learned independently. MTL often leads to better trained... 详细信息
来源: 评论
A deep learning-based remaining useful life prediction approach for bearings
arXiv
收藏 引用
arXiv 2018年
作者: Cheng, Cheng Ma, Guijun Zhang, Yong Sun, Mingyang Teng, Fei Ding, Han Yuan, Ye The Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan430074 China The State Key Laboratory of Digital Manufacturing Equipment and Technology Huazhong University of Science and Technology Wuhan430074 China The School of Mechanical Science and Engineering Huazhong University of Science and Technology Wuhan430074 China School of Information Science and Engineering Wuhan University of Science and Technology Wuhan430081 China The College of Control Science and Engineering Zhejiang University Hangzhou310007 China The Department of Electrical & Electronic Engineering Imperial College London LondonSW7 2AZ United Kingdom
In industrial applications, nearly half the failures of motors are caused by the degradation of rolling element bearings (REBs). Therefore, accurately estimating the remaining useful life (RUL) for REBs is of crucial ... 详细信息
来源: 评论
Unit commitment considering demand response behavior based on utility maximization
Unit commitment considering demand response behavior based o...
收藏 引用
2017 IEEE Conference on Energy Internet and Energy system Integration, EI2 2017
作者: Zhang, Yumin Han, Xueshan Xu, Bo Zhang, Li Sun, Donglei Miao, Xiaofeng Jiang, Jiayin Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education Shandong University Jinan China State Key Laboratory of Control and Simulation of Power Systems and Generation Equipment Department of Electrical Engineering Tsinghua University Haidian District Beijing100084 China Economic and Technology Research Institute of State Grid Shandong Electric Power Company Jinan China State Grid Shandong Electric Power Company Yantai Electric Power Company Yantai264001 China
The active participation of demand side resources in power grid operation not only benefits the individual participant but also benefits the whole system. The optimal goal can promote by excavating the active behavior... 详细信息
来源: 评论