咨询与建议

限定检索结果

文献类型

  • 7,421 篇 期刊文献
  • 4,931 篇 会议
  • 27 册 图书

馆藏范围

  • 12,379 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,283 篇 工学
    • 4,469 篇 计算机科学与技术...
    • 3,618 篇 软件工程
    • 1,494 篇 信息与通信工程
    • 1,283 篇 控制科学与工程
    • 1,117 篇 电气工程
    • 1,084 篇 电子科学与技术(可...
    • 766 篇 生物工程
    • 735 篇 光学工程
    • 724 篇 机械工程
    • 641 篇 化学工程与技术
    • 544 篇 材料科学与工程(可...
    • 538 篇 生物医学工程(可授...
    • 443 篇 仪器科学与技术
    • 387 篇 动力工程及工程热...
    • 266 篇 交通运输工程
    • 260 篇 核科学与技术
    • 241 篇 力学(可授工学、理...
    • 195 篇 土木工程
  • 5,414 篇 理学
    • 2,377 篇 物理学
    • 2,181 篇 数学
    • 909 篇 生物学
    • 679 篇 统计学(可授理学、...
    • 629 篇 化学
    • 481 篇 系统科学
  • 1,855 篇 管理学
    • 1,230 篇 管理科学与工程(可...
    • 662 篇 图书情报与档案管...
    • 383 篇 工商管理
  • 524 篇 医学
    • 425 篇 临床医学
    • 322 篇 基础医学(可授医学...
    • 235 篇 药学(可授医学、理...
  • 219 篇 法学
  • 158 篇 经济学
  • 142 篇 农学
  • 47 篇 教育学
  • 40 篇 文学
  • 30 篇 军事学
  • 27 篇 艺术学
  • 5 篇 哲学
  • 2 篇 历史学

主题

  • 240 篇 laboratories
  • 238 篇 computer science
  • 185 篇 deep learning
  • 176 篇 hadron colliders
  • 168 篇 feature extracti...
  • 167 篇 semantics
  • 130 篇 optimization
  • 127 篇 computational mo...
  • 120 篇 machine learning
  • 104 篇 neural networks
  • 97 篇 data mining
  • 90 篇 reinforcement le...
  • 90 篇 visualization
  • 86 篇 wireless sensor ...
  • 80 篇 support vector m...
  • 80 篇 control systems
  • 77 篇 image segmentati...
  • 76 篇 object detection
  • 73 篇 deep neural netw...
  • 72 篇 algorithm design...

机构

  • 653 篇 department of ph...
  • 640 篇 cavendish labora...
  • 526 篇 oliver lodge lab...
  • 501 篇 infn sezione di ...
  • 499 篇 physikalisches i...
  • 478 篇 infn sezione di ...
  • 475 篇 university of ch...
  • 464 篇 infn sezione di ...
  • 442 篇 infn laboratori ...
  • 406 篇 infn sezione di ...
  • 348 篇 infn sezione di ...
  • 343 篇 infn sezione di ...
  • 342 篇 infn sezione di ...
  • 339 篇 iccub universita...
  • 335 篇 state key labora...
  • 327 篇 infn sezione di ...
  • 322 篇 department for p...
  • 300 篇 universiteit maa...
  • 293 篇 fakultät physik ...
  • 288 篇 infn sezione di ...

作者

  • 186 篇 c. alexa
  • 182 篇 j. m. izen
  • 180 篇 g. bella
  • 178 篇 c. amelung
  • 177 篇 j. strandberg
  • 176 篇 d. calvet
  • 166 篇 n. orlando
  • 164 篇 y. tayalati
  • 159 篇 g. spigo
  • 158 篇 v. chiarella
  • 158 篇 barter w.
  • 156 篇 f. siegert
  • 156 篇 brundu d.
  • 154 篇 s. veneziano
  • 152 篇 a. dimitrievska
  • 148 篇 m. lu
  • 148 篇 f. deliot
  • 146 篇 r. ströhmer
  • 146 篇 y. abulaiti
  • 145 篇 bowcock t.j.v.

语言

  • 11,331 篇 英文
  • 721 篇 其他
  • 327 篇 中文
  • 2 篇 德文
  • 1 篇 荷兰文
检索条件"机构=State Key Laboratory of Intelligent Technology and Systems Computer Science Department"
12379 条 记 录,以下是251-260 订阅
排序:
Effects of External Archives on the Performance of Multi-Objective Evolutionary Algorithms on Real-World Problems
Effects of External Archives on the Performance of Multi-Obj...
收藏 引用
2023 IEEE Congress on Evolutionary Computation, CEC 2023
作者: Nan, Yang Shu, Tianye Ishibuchi, Hisao Southern University of Science and Technology Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Department of Computer Science and Engineering Shenzhen518055 China
External archives have attracted more and more attention in the evolutionary multi-objective optimization (EMO) community. This is because a solution set selected from an external archive is usually better than the fi... 详细信息
来源: 评论
Two-Stage Lazy Greedy Inclusion Hypervolume Subset Selection for Large-Scale Problem
Two-Stage Lazy Greedy Inclusion Hypervolume Subset Selection...
收藏 引用
2023 IEEE International Conference on systems, Man, and Cybernetics, SMC 2023
作者: Nan, Yang Shu, Tianye Ishibuchi, Hisao Southern University of Science and Technology Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Department of Computer Science and Engineering Shenzhen518055 China
Hypervolume subset selection (HSS) is a hot topic in the evolutionary multi-objective optimization (EMO) community since hypervolume is the most widely-used performance indicator. In the literature, most HSS algorithm... 详细信息
来源: 评论
Partially Degenerate Multi-objective Test Problems  12th
Partially Degenerate Multi-objective Test Problems
收藏 引用
12th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2023
作者: Pang, Lie Meng Nan, Yang Ishibuchi, Hisao Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China
Degenerate multi-objective test problems are included in test suites to evaluate EMO algorithms on a wide variety of test problems. However, it was pointed out in some studies that the frequently-used degenerate DTLZ5... 详细信息
来源: 评论
Scale‐wise interaction fusion and knowledge distillation network for aerial scene recognition
收藏 引用
CAAI Transactions on Intelligence technology 2023年 第4期8卷 1178-1190页
作者: Hailong Ning Tao Lei Mengyuan An Hao Sun Zhanxuan Hu Asoke K.Nandi School of Computer Science and Technology Xi'an University of Posts and TelecommunicationsShaanxi Key Laboratory of Network Data Analysis and Intelligent ProcessingXi'anChina Xi'an Key Laboratory of Big Data and Intelligent Computing Xi'anChina School of Electronic Information and Artificial Intelligence Shaanxi University of Science and TechnologyXi'anChina School of Computer Central China Normal UniversityWuhanChina Department of Electronic and Electrical Engineering Brunel University LondonLondonUK Xi'an Jiaotong University Xi'anChina
Aerial scene recognition(ASR)has attracted great attention due to its increasingly essential *** of the ASR methods adopt the multi‐scale architecture because both global and local features play great roles in ***,th... 详细信息
来源: 评论
An Improved Fuzzy Classifier-Based Evolutionary Algorithm for Expensive Multiobjective Optimization Problems with Complicated Pareto Sets  12th
An Improved Fuzzy Classifier-Based Evolutionary Algorithm fo...
收藏 引用
12th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2023
作者: Zhang, Jinyuan He, Linjun Ishibuchi, Hisao Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China
Various surrogate-based multiobjective evolutionary algori-thms (MOEAs) have been proposed to solve expensive multiobjective optimization problems (MOPs). However, these algorithms are usually examined on test suites ... 详细信息
来源: 评论
Deep Learning-Based Estimation of Arterial Stiffness from PPG Spectrograms: A Novel Approach for Non-Invasive Cardiovascular Diagnostics  46
Deep Learning-Based Estimation of Arterial Stiffness from PP...
收藏 引用
46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024
作者: Abrisham, Kiana Pilevar Alipour, Khalil Tarvirdizadeh, Bahram Ghamari, Mohammad Laboratory Department of Mechatronics Engineering School of Intelligent Systems Engineering College of Interdisciplinary Science and Technology Tehran Iran Kettering University Department of Electrical and Computer Engineering FlintMI United States
Cardiovascular diseases (CVDs), a leading cause of global mortality, are intricately linked to arterial stiffness, a key factor in cardiovascular health. Non-invasive assessment of arterial stiffness, particularly thr... 详细信息
来源: 评论
Effects of Initialization Methods on the Performance of Surrogate-Based Multiobjective Evolutionary Algorithms
Effects of Initialization Methods on the Performance of Surr...
收藏 引用
2023 IEEE Symposium Series on Computational Intelligence, SSCI 2023
作者: Zhang, Jinyuan Ishibuchi, Hisao He, Linjun Nan, Yang Southern University of Science and Technology Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Department of Computer Science and Engineering Shenzhen518055 China
Initialization plays a crucial role in surrogate-based multiobjective evolutionary algorithms (MOEAs) when tackling computationally expensive multiobjective optimization problems. During the initialization process, so... 详细信息
来源: 评论
Deep Representation Learning for Electron Ionization Mass Spectra Retrieval
Deep Representation Learning for Electron Ionization Mass Sp...
收藏 引用
2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
作者: Liu, Shibo Zhang, Xuan Jiao, Anlei Sun, Shiwei Dian, Longyang Cui, Xuefeng Shandong University School of Computer Science and Technology Qingdao China Chinese Academy of Sciences Key Lab of Intelligent Information Processing Institute of Computing Technology Beijing China Shandong University State Key Laboratory of Microbial Technology Qingdao China
The task of retrieving and analyzing mass spectra is indispensable for the identification of compounds in mass spectrometry (MS). This methodology is of critical importance as it enables researchers to correlate obser... 详细信息
来源: 评论
Two-Stage Greedy Approximated Hypervolume Subset Selection for Large-Scale Problems  12th
Two-Stage Greedy Approximated Hypervolume Subset Selection f...
收藏 引用
12th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2023
作者: Nan, Yang Ishibuchi, Hisao Shu, Tianye Shang, Ke Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China
Recently, it has been demonstrated that a solution set that is better than the final population can be obtained by subset selection in some studies on evolutionary multi-objective optimization. The main challenge in t... 详细信息
来源: 评论
Data-Driven Discovery of Nonlinear Dynamical systems from Noisy and Sparse Observations
Data-Driven Discovery of Nonlinear Dynamical Systems from No...
收藏 引用
2024 International Conference on New Trends in Computational Intelligence, NTCI 2024
作者: Zhu, Wei Pei, Chao Liang, Yulan Chen, Zhang Li, Jingsui School of Science Chongqing University of Posts and Telecommunications Chongqing China Key Laboratory of Intelligent Analysis and Decision on Complex Systems Chongqing China College of Computer Science and Technology Chongqing University of Posts and Telecommunications Chongqing China
Sparse Identification of Nonlinear Dynamics (SINDy) is a data-driven algorithm for interpretability mod-eling. SINDy has a strong ability to learn dynamical systems from time series data. Sparse Identification of Nonl... 详细信息
来源: 评论