咨询与建议

限定检索结果

文献类型

  • 7,421 篇 期刊文献
  • 4,931 篇 会议
  • 27 册 图书

馆藏范围

  • 12,379 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,283 篇 工学
    • 4,469 篇 计算机科学与技术...
    • 3,618 篇 软件工程
    • 1,494 篇 信息与通信工程
    • 1,283 篇 控制科学与工程
    • 1,117 篇 电气工程
    • 1,084 篇 电子科学与技术(可...
    • 766 篇 生物工程
    • 735 篇 光学工程
    • 724 篇 机械工程
    • 641 篇 化学工程与技术
    • 544 篇 材料科学与工程(可...
    • 538 篇 生物医学工程(可授...
    • 443 篇 仪器科学与技术
    • 387 篇 动力工程及工程热...
    • 266 篇 交通运输工程
    • 260 篇 核科学与技术
    • 241 篇 力学(可授工学、理...
    • 195 篇 土木工程
  • 5,414 篇 理学
    • 2,377 篇 物理学
    • 2,181 篇 数学
    • 909 篇 生物学
    • 679 篇 统计学(可授理学、...
    • 629 篇 化学
    • 481 篇 系统科学
  • 1,855 篇 管理学
    • 1,230 篇 管理科学与工程(可...
    • 662 篇 图书情报与档案管...
    • 383 篇 工商管理
  • 524 篇 医学
    • 425 篇 临床医学
    • 322 篇 基础医学(可授医学...
    • 235 篇 药学(可授医学、理...
  • 219 篇 法学
  • 158 篇 经济学
  • 142 篇 农学
  • 47 篇 教育学
  • 40 篇 文学
  • 30 篇 军事学
  • 27 篇 艺术学
  • 5 篇 哲学
  • 2 篇 历史学

主题

  • 240 篇 laboratories
  • 238 篇 computer science
  • 185 篇 deep learning
  • 176 篇 hadron colliders
  • 168 篇 feature extracti...
  • 167 篇 semantics
  • 130 篇 optimization
  • 127 篇 computational mo...
  • 120 篇 machine learning
  • 104 篇 neural networks
  • 97 篇 data mining
  • 90 篇 reinforcement le...
  • 90 篇 visualization
  • 86 篇 wireless sensor ...
  • 80 篇 support vector m...
  • 80 篇 control systems
  • 77 篇 image segmentati...
  • 76 篇 object detection
  • 73 篇 deep neural netw...
  • 72 篇 algorithm design...

机构

  • 653 篇 department of ph...
  • 640 篇 cavendish labora...
  • 526 篇 oliver lodge lab...
  • 501 篇 infn sezione di ...
  • 499 篇 physikalisches i...
  • 478 篇 infn sezione di ...
  • 475 篇 university of ch...
  • 464 篇 infn sezione di ...
  • 442 篇 infn laboratori ...
  • 406 篇 infn sezione di ...
  • 348 篇 infn sezione di ...
  • 343 篇 infn sezione di ...
  • 342 篇 infn sezione di ...
  • 339 篇 iccub universita...
  • 335 篇 state key labora...
  • 327 篇 infn sezione di ...
  • 322 篇 department for p...
  • 300 篇 universiteit maa...
  • 293 篇 fakultät physik ...
  • 288 篇 infn sezione di ...

作者

  • 186 篇 c. alexa
  • 182 篇 j. m. izen
  • 180 篇 g. bella
  • 178 篇 c. amelung
  • 177 篇 j. strandberg
  • 176 篇 d. calvet
  • 166 篇 n. orlando
  • 164 篇 y. tayalati
  • 159 篇 g. spigo
  • 158 篇 v. chiarella
  • 158 篇 barter w.
  • 156 篇 f. siegert
  • 156 篇 brundu d.
  • 154 篇 s. veneziano
  • 152 篇 a. dimitrievska
  • 148 篇 m. lu
  • 148 篇 f. deliot
  • 146 篇 r. ströhmer
  • 146 篇 y. abulaiti
  • 145 篇 bowcock t.j.v.

语言

  • 11,331 篇 英文
  • 721 篇 其他
  • 327 篇 中文
  • 2 篇 德文
  • 1 篇 荷兰文
检索条件"机构=State Key Laboratory of Intelligent Technology and Systems Computer Science Department"
12379 条 记 录,以下是4911-4920 订阅
排序:
SAG-GAN: Semi-supervised attention-guided GANs for data augmentation on medical images
arXiv
收藏 引用
arXiv 2020年
作者: Qi, Chang Chen, Junyang Xu, Guizhi Xu, Zhenghua Lukasiewicz, Thomas Liu, Yang State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology China Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health Hebei University of Technology China Department of Computer Science University of Macau China Department of Computer Science University of Oxford United Kingdom College of Computer Science and Technology Harbin Institute of Technology China
Recently deep learning methods, in particular, convolutional neural networks (CNNs), have led a massive breakthrough in the range of computer vision. Also, the large-scale annotated dataset is the essential key to a s... 详细信息
来源: 评论
Artificial intelligence-based methods for renewable power system operation
Nature Reviews Electrical Engineering
收藏 引用
Nature Reviews Electrical Engineering 2024年 第3期1卷 163-179页
作者: Yuanzheng Li Fei Hu Juntao Duan Yong Zhao Zhigang Zeng Yizhou Ding Shangyang He Guanghui Wen Hua Geng Zhengguang Wu Hoay Beng Gooi Chenghui Zhang Shengwei Mei Key Laboratory of lmage Information Processing and Intelligent Control of Ministry of Education of China School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China National Key Laboratory of Multispectral Information Intelligent Processing Technology Huazhong University of Science and Technology Wuhan China China-EU Institute for Clean and Renewable Energy Huazhong University of Science and Technology Wuhan China Department of Systems Science School of Mathematics Southeast University Nanjing China Department of Automation Tsinghua University Beijing China State Key Laboratory of Industrial Control Technology Institute of Cyber-Systems and Control Zhejiang University Hangzhou China School of Electrical and Electronics Engineering Nanyang Technological University Singapore Singapore School of Control Science and Engineering Shandong University Jinan China Department of Electrical Engineering Tsinghua University Beijing China
Carbon neutrality goals are driving the increased use of renewable energy (RE). Large-scale use of RE requires accurate energy generation forecasts; optimized power dispatch, which minimizes costs while satisfying ope...
来源: 评论
Deep Forest with Hashing Screening and Window Screening
arXiv
收藏 引用
arXiv 2022年
作者: Ma, Pengfei Wu, Youxi Li, Yan Guo, Lei Jiang, He Zhu, Xingquan Wu, Xindong School of Artificial Intelligence Hebei University of Technology Tianjing300401 China Hebei Key Laboratory of Big Data Computing Tianjing300401 China School of Economics and Management Hebei University of Technology Tianjing300401 China State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjing300401 China School of Software Dalian University of Technology Dalian116023 China Department of Computer & Electrical Engineering and Computer Science Florida Atlantic University FL33431 United States Hefei University of Technology Hefei230009 China Mininglamp Academy of Sciences Mininglamp Technology Beijing100084 China
As a novel deep learning model, gcForest has been widely used in various applications. However, the current multi-grained scanning of gcForest produces many redundant feature vectors, and this increases the time cost ... 详细信息
来源: 评论
Discovering new intents with deep aligned clustering
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Hanlei Xu, Hua Lin, Ting-En Lyu, Rui State Key Laboratory of Intelligent Technology and Systems Department of Computer Science and Technology Tsinghua University Beijing100084 China Beijing100084 China Beijing University of Posts Telecommunications University Beijing100876 China
Discovering new intents is a crucial task in dialogue systems. Most existing methods are limited in transferring the prior knowledge from known intents to new intents. They also have difficulties in providing high-qua... 详细信息
来源: 评论
Mechanical Structure and Control Methods for Lower-Limb Rehabilitation Robots
Mechanical Structure and Control Methods for Lower-Limb Reha...
收藏 引用
第40届中国控制会议
作者: Wangyang Ge Ruoyu Jiang Juan Zhao Zhentao Liu Zhaohui Yang Jinhua She School of Automation China University of Geosciences Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Engineering Research Center of Intelligent Technology for Geo-Exploration Ministry of Education Department of Rehabilitation Union HospitalTongji Medical CollegeHuazhong Univ.Science & Technology School of Engineering Tokyo University of Technology
As a rehabilitation aid,lower-limb rehabilitation robots help patients recover their walking *** paper presets a review of such a rehabilitation ***,we classify commercially available common types of lower-limb rehabi... 详细信息
来源: 评论
Non-destructive Degradation Pattern Decoupling for Ultra-early Battery Prototype Verification Using Physics-informed Machine Learning
arXiv
收藏 引用
arXiv 2024年
作者: Tao, Shengyu Zhang, Mengtian Zhao, Zixi Li, Haoyang Ma, Ruifei Che, Yunhong Sun, Xin Su, Lin Chen, Xiangyu Zhou, Zihao Chang, Heng Cao, Tingwei Xiao, Xiao Liu, Yaojun Yu, Wenjun Xu, Zhongling Li, Yang Hao, Han Zhang, Xuan Hu, Xiaosong Zhou, Guangmin Tsinghua-Berkeley Shenzhen Institute Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen China State Key Laboratory of Intelligent Green Vehicle and Mobility Tsinghua University Beijing China Department of Energy Aalborg University Aalborg Denmark University of Groningen Groningen Netherlands Department of Engineering Science University of Oxford OxfordOX1 3PJ United Kingdom Sunwoda Mobility Energy Technology Co. Ltd. Shenzhen China College of Mechanical and Vehicle Engineering Chongqing University Chongqing China
Manufacturing complexities and uncertainties have impeded the transition from material prototypes to commercial batteries, making prototype verification critical to quality assessment. A fundamental challenge involves... 详细信息
来源: 评论
Synergistic integration of metaheuristics and machine learning: latest advances and emerging trends
收藏 引用
Artificial Intelligence Review 2025年 第9期58卷
作者: Zhang, Ruining Wang, Jian Liu, Chanjuan Su, Kaile Ishibuchi, Hisao Jin, Yaochu School of Computer Science and Technology Dalian University of Technology Dalian116024 China Qingdao266580 China School of Information and Communication Technology Griffith University Brisbane4111 Australia Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China School of Engineering Westlake University Hangzhou310024 China
Metaheuristic algorithms (MH) and machine learning (ML) are important components of artificial intelligence (AI). The synergy between MH’s optimization search capabilities and ML’s data analysis strengths has proven... 详细信息
来源: 评论
TR-BERT: Dynamic token reduction for accelerating BERT inference
arXiv
收藏 引用
arXiv 2021年
作者: Ye, Deming Lin, Yankai Huang, Yufei Sun, Maosong Department of Computer Science and Technology Tsinghua University Beijing China Institute for Artificial Intelligence Tsinghua University Beijing China Beijing National Research Center for Information Science and Technology China State Key Lab on Intelligent Technology and Systems Tsinghua University Beijing China Beijing Academy of Artificial Intelligence China Pattern Recognition Center WeChat AI Tencent Inc
Existing pre-trained language models (PLMs) are often computationally expensive in inference, making them impractical in various resource-limited real-world applications. To address this issue, we propose a dynamic to... 详细信息
来源: 评论
Synthesis of Abiotic Supramolecular Polymers Inside Living Cells via Organocatalysis-Mediated Self-Assembly
收藏 引用
Angewandte Chemie 2025年
作者: Hucheng Wang Ya-Ting Zheng Jiahao Zhang Yuliang Gao Jingjing Chen Peiwen Cai Junyou Wang Jan H. van Esch Xuhong Guo Hui Li Yiming Wang State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 P.R. China School of Systems Science and Institute of Nonequilibrium Systems Beijing Normal University Beijing 100875 P.R. China Department of Chemical Engineering Delft University of Technology Delft 2629 HZ The Netherlands Key Laboratory of Cell Proliferation and Regulation Biology Ministry of Education Beijing Normal University Beijing 100875 P.R. China Shanghai Key Laboratory for Intelligent Sensing and Detection Technology East China University of Science and Technology Shanghai 200237 P.R. China
Cells execute mesmerizing functions using supramolecular polymers (SPs) formed through the self-assembly of biological precursors. Integration of the vast array of synthetic SPs with living cells would offer a powerfu... 详细信息
来源: 评论
Learning with Group Noise
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Qizhou Yao, Jiangchao Gong, Chen Liu, Tongliang Gong, Mingming Yang, Hongxia Han, Bo Department of Computer Science Hong Kong Baptist University Hong Kong Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of MoE School of Computer Science and Engineering Nanjing University of Science and Technology China Data Analytics and Intelligence Lab Alibaba Group China Department of Computing Hong Kong Polytechnic University Hong Kong Trustworthy Machine Learning Lab School of Computer Science University of Sydney Australia School of Mathematics and Statistics University of Melbourne Australia
Machine learning in the context of noise is a challenging but practical setting to plenty of real-world applications. Most of the previous approaches in this area focus on the pairwise relation (casual or correlationa... 详细信息
来源: 评论