咨询与建议

限定检索结果

文献类型

  • 4,178 篇 期刊文献
  • 3,628 篇 会议
  • 24 册 图书

馆藏范围

  • 7,830 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5,368 篇 工学
    • 3,189 篇 计算机科学与技术...
    • 2,633 篇 软件工程
    • 1,103 篇 信息与通信工程
    • 1,036 篇 控制科学与工程
    • 749 篇 电气工程
    • 645 篇 电子科学与技术(可...
    • 565 篇 机械工程
    • 564 篇 生物工程
    • 460 篇 光学工程
    • 380 篇 生物医学工程(可授...
    • 291 篇 化学工程与技术
    • 288 篇 仪器科学与技术
    • 242 篇 材料科学与工程(可...
    • 233 篇 动力工程及工程热...
    • 222 篇 交通运输工程
    • 141 篇 安全科学与工程
    • 135 篇 土木工程
  • 3,047 篇 理学
    • 1,574 篇 数学
    • 881 篇 物理学
    • 630 篇 生物学
    • 485 篇 统计学(可授理学、...
    • 418 篇 系统科学
    • 283 篇 化学
  • 1,292 篇 管理学
    • 822 篇 管理科学与工程(可...
    • 493 篇 图书情报与档案管...
    • 290 篇 工商管理
  • 361 篇 医学
    • 302 篇 临床医学
    • 234 篇 基础医学(可授医学...
    • 167 篇 药学(可授医学、理...
  • 165 篇 法学
    • 130 篇 社会学
  • 115 篇 经济学
  • 84 篇 农学
  • 36 篇 教育学
  • 33 篇 文学
  • 17 篇 艺术学
  • 14 篇 军事学
  • 5 篇 哲学
  • 1 篇 历史学

主题

  • 198 篇 laboratories
  • 177 篇 computer science
  • 154 篇 feature extracti...
  • 136 篇 semantics
  • 127 篇 deep learning
  • 101 篇 optimization
  • 95 篇 machine learning
  • 94 篇 intelligent syst...
  • 91 篇 neural networks
  • 87 篇 training
  • 86 篇 control systems
  • 84 篇 computational mo...
  • 80 篇 reinforcement le...
  • 75 篇 data mining
  • 74 篇 accuracy
  • 73 篇 visualization
  • 64 篇 support vector m...
  • 64 篇 artificial intel...
  • 63 篇 robustness
  • 58 篇 object detection

机构

  • 161 篇 state key labora...
  • 158 篇 department of co...
  • 151 篇 state key labora...
  • 98 篇 university of ch...
  • 85 篇 guangdong provin...
  • 62 篇 state key labora...
  • 60 篇 department of el...
  • 60 篇 ieee
  • 59 篇 department of au...
  • 54 篇 hubei key labora...
  • 53 篇 beijing national...
  • 52 篇 peng cheng labor...
  • 49 篇 department of co...
  • 48 篇 state key labora...
  • 45 篇 department of co...
  • 43 篇 state key labora...
  • 39 篇 key laboratory o...
  • 34 篇 state key lab of...
  • 33 篇 department of co...
  • 32 篇 department of el...

作者

  • 84 篇 sun maosong
  • 66 篇 sun fuchun
  • 66 篇 fuchun sun
  • 56 篇 huang minlie
  • 51 篇 niyato dusit
  • 50 篇 zhou jie
  • 46 篇 liu zhiyuan
  • 45 篇 zhao hai
  • 42 篇 liu yang
  • 42 篇 zhang min
  • 40 篇 yao xin
  • 40 篇 zengqi sun
  • 38 篇 tang ke
  • 38 篇 zhang bo
  • 35 篇 wei li
  • 29 篇 fei-yue wang
  • 28 篇 peifa jia
  • 26 篇 lu bao-liang
  • 26 篇 yang yang
  • 26 篇 junping du

语言

  • 6,520 篇 英文
  • 1,134 篇 其他
  • 191 篇 中文
  • 2 篇 德文
  • 1 篇 法文
检索条件"机构=State Key Laboratory of Intelligent Technology and Systems Department of Computer Science"
7830 条 记 录,以下是4921-4930 订阅
排序:
Multiobjective Test Problems with Degenerate Pareto Fronts
arXiv
收藏 引用
arXiv 2018年
作者: Zhen, Liangli Li, Miqing Cheng, Ran Peng, Dezhong Yao, Xin 138632 Singapore School of Computer Science University of Birmingham BirminghamB152TT United Kingdom The Shenzhen Key Laboratory of Computational Intelligence University Key Laboratory of Evolving Intelligent Systems of Guangdong Province Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China The Machine Intelligence Laboratory College of Computer Science Sichuan University Chengdu610065 China The CERCIA School of Computer Science University of Birmingham United Kingdom
In multiobjective optimisation, a set of scalable test problems with a variety of features allow researchers to investigate and evaluate the abilities of different optimisation algorithms, and thus can help them to de... 详细信息
来源: 评论
Design of gear reducer based on FOA optimization algorithm  1st
Design of gear reducer based on FOA optimization algorithm
收藏 引用
1st International Conference on Smart Vehicular technology, Transportation, Communication and Applications, VTCA 2017
作者: Lin, Xiaojia Zhang, Fuquan Xu, Lin Department of Computer Science Fujian Business University Fuzhou350012 China Fujian Provincial Key Laboratory of Information Processing and Intelligent Control Minjiang Univeristy Fuzhou350121 China School of Software Beijing Institute of Technology Beijing100081 China Innovative Information Industry Research Institute Fujian Normal University Fuzhou350300 China
In order to optimize the design of gear reducer, gear reducer optimal design to improve reliability and security, slow convergence and local optimum for FOA algorithm is proposed based on the improved type FOA gear re... 详细信息
来源: 评论
Duplicate checking Strategies for Selecting Topics for Graduation Thesis Based on Maximum Public Sequence
收藏 引用
IOP Conference Series: Earth and Environmental science 2019年 第3期267卷
作者: Guorui Yu Li Huang Jiewen Sun Shangchun Liao School of Computer Science and Technology Wuhan University of Science and Technology phone:*** Intelligent Information Processing and Hubei Real-time Industrial Systems Laboratory. Key Laboratory of Metallurgical Equipment and Control Technology Wuhan University of Science and Technology Ministry of Education.
The system is based on the undergraduate thesis management system as the practice platform, focusing on the realization of the thesis topic check function. The current check-up detection system is based on the entire ...
来源: 评论
Learning from large-scale noisy web data with ubiquitous reweighting for image classification
arXiv
收藏 引用
arXiv 2018年
作者: Li, Jia Song, Yafei Zhu, Jianfeng Cheng, Lele Su, Ying Ye, Lin Yuan, Pengcheng Han, Shumin State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang University Beijing100191 China Shenzhen Cyberspace Laboratory Shenzhen China National Engineering Laboratory for Video Technology School of Electronics Engineering and Computer Science Peking University Beijing100871 China Computer Vision Technology Department of Baidu Beijing100871 China
Many advances of deep learning techniques originate from the efforts of addressing the image classification task on large-scale datasets. However, the construction of such clean datasets is costly and time-consuming s... 详细信息
来源: 评论
A sub-Neptune transiting the young field star HD 18599 at 40 pc
arXiv
收藏 引用
arXiv 2022年
作者: de Leon, Jerome P. Livingston, John H. Jenkins, James S. Vines, Jose I. Wittenmyer, Robert A. Clark, Jake T. Winn, Joshual I.M. Addison, Brett Ballard, Sarah Bayliss, Daniel Beichman, Charles Benneke, Björn Berardo, David Anthony Bowler, Brendan P. Brown, Tim Bryant, Edward M. Christiansen, Jessie Ciardi, David Collins, Karen A. Collins, Kevin Crossfield, Ian Deming, Drake Dragomir, Diana Dressing, Courtney D. Fukui, Akihiko Gan, Tianjun Giacalone, Steven Gill, Samuel Alvarez, Erica Gonzàlez Gorjian, V. González Alvarez, E. Hesse, Katharine Horner, Jonathan Howell, Steve B. Jenkins, Jon M. Kane, Stephen R. Kendall, Alicia Kielkopf, John F. Kreidberg, Laura Latham, David W. Liu, Huigen Lund, Michael B. Matson, Rachel Matthews, Elisabeth Mengel, Mathew W. Morales, Farisa Mori, Mayuko Narita, Norio Nishiumi, Taku Okumura, Jack Plavchan, Peter Quinn, Sam Rabus, Markus Ricker, George Rudat, Alexander Schlieder, Joshua Schwarz, Richard P. Seager, Sara Shporer, Avi Smith, Alexis M.S. Sphorer, Avi Stassun, Keivan Tamura, Motohide Tan, Thiam G. Tinney, C.G. Vanderspek, Roland Gorjian, Varoujan Werner, Michael W. West, Richard G. Wright, Duncan Zhang, Hui Zhou, George Department of Astronomy Graduate School of Science The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo113-0033 Japan Astrobiology Center 2-21-1 Osawa Mitaka Tokyo181-8588 Japan National Astronomical Observatory of Japan 2-21-1 Osawa Mitaka Tokyo181-8588 Japan Department of Astronomical Science The Graduated University for Advanced Studies SOKENDAI 2-21-1 Osawa Mitaka Tokyo181-8588 Japan Núcleo de Astronomía Facultad de Ingeniería y Ciencias Universidad Diego Portales Av. Ejército 441 Santiago Chile Casilla 36-D Santiago Chile Universidad de Chile Camino el Observatorio Las Condes Santiago1515 Chile University of Southern Queensland Centre for Astrophysics West Street ToowoombaQLD4350 Australia Department of Astrophysical Sciences Princeton University 4 Ivy Lane PrincetonNJ08544 United States Department of Astronomy University of Florida 211 Bryant Space Science Center GainesvilleFL32611 United States Department of Physics University of Warwick Gibbet Hill Road CoventryCV4 7AL United Kingdom NASA Exoplanet Science Institute California Institute of Technology PasadenaCA91106 United States Department of Physics Institute for Research on Exoplanets Université de Montréal MontréalQC Canada Department of Physics Kavli Institute for Astrophysics and Space Research Massachusetts Institute of Technology CambridgeMA02139 United States Department of Astronomy The University of Texas AustinTX78712 United States CASA University of Colorado BoulderCO80309 United States Las Cumbres Observatory GoletaCA93117 United States Mullard Space Science Laboratory University College London Holmbury St Mary Dorking SurreyRH5 6NT United Kingdom Center for Astrophysics Harvard & Smithsonian 60 Garden Street CambridgeMA02138 United States George Mason University 4400 University Drive MS 3F3 FairfaxVA22030 United States Department of Physics and Astronomy University of Kansas 1082 Malott 1251 Wescoe Hall Dr LawrenceKS66045 United
Transiting exoplanets orbiting young nearby stars are ideal laboratories for testing theories of planet formation and evolution. However, to date only a handful of stars with age © 2022, CC BY.
来源: 评论
Author Correction: BigNeuron: a resource to benchmark and predict performance of algorithms for automated tracing of neurons in light microscopy datasets
收藏 引用
Nature methods 2024年 第10期21卷 1959页
作者: Linus Manubens-Gil Zhi Zhou Hanbo Chen Arvind Ramanathan Xiaoxiao Liu Yufeng Liu Alessandro Bria Todd Gillette Zongcai Ruan Jian Yang Miroslav Radojević Ting Zhao Li Cheng Lei Qu Siqi Liu Kristofer E Bouchard Lin Gu Weidong Cai Shuiwang Ji Badrinath Roysam Ching-Wei Wang Hongchuan Yu Amos Sironi Daniel Maxim Iascone Jie Zhou Erhan Bas Eduardo Conde-Sousa Paulo Aguiar Xiang Li Yujie Li Sumit Nanda Yuan Wang Leila Muresan Pascal Fua Bing Ye Hai-Yan He Jochen F Staiger Manuel Peter Daniel N Cox Michel Simonneau Marcel Oberlaender Gregory Jefferis Kei Ito Paloma Gonzalez-Bellido Jinhyun Kim Edwin Rubel Hollis T Cline Hongkui Zeng Aljoscha Nern Ann-Shyn Chiang Jianhua Yao Jane Roskams Rick Livesey Janine Stevens Tianming Liu Chinh Dang Yike Guo Ning Zhong Georgia Tourassi Sean Hill Michael Hawrylycz Christof Koch Erik Meijering Giorgio A Ascoli Hanchuan Peng Institute for Brain and Intelligence Southeast University Nanjing China. Microsoft Corporation Redmond WA USA. Tencent AI Lab Bellevue WA USA. Computing Environment and Life Sciences Directorate Argonne National Laboratory Lemont IL USA. Kaya Medical Seattle WA USA. University of Cassino and Southern Lazio Cassino Italy. Center for Neural Informatics Structures and Plasticity Krasnow Institute for Advanced Study George Mason University Fairfax VA USA. Faculty of Information Technology Beijing University of Technology Beijing China. Beijing International Collaboration Base on Brain Informatics and Wisdom Services Beijing China. Nuctech Netherlands Rotterdam the Netherlands. Janelia Research Campus Howard Hughes Medical Institute Ashburn VA USA. Department of Electrical and Computer Engineering University of Alberta Edmonton Alberta Canada. Ministry of Education Key Laboratory of Intelligent Computation and Signal Processing Anhui University Hefei China. Paige AI New York NY USA. Scientific Data Division and Biological Systems and Engineering Division Lawrence Berkeley National Lab Berkeley CA USA. Helen Wills Neuroscience Institute and Redwood Center for Theoretical Neuroscience UC Berkeley Berkeley CA USA. RIKEN AIP Tokyo Japan. Research Center for Advanced Science and Technology (RCAST) The University of Tokyo Tokyo Japan. School of Computer Science University of Sydney Sydney New South Wales Australia. Texas A&M University College Station TX USA. Cullen College of Engineering University of Houston Houston TX USA. Graduate Institute of Biomedical Engineering National Taiwan University of Science and Technology Taipei Taiwan. National Centre for Computer Animation Bournemouth University Poole UK. PROPHESEE Paris France. Department of Neuroscience Columbia University New York NY USA. Mortimer B. Zuckerman Mind Brain Behavior Institute Columbia University New York NY USA. Department of Computer Science Northern Illinois Universit
来源: 评论
Integrating a weighted-average method into the random walk framework to generate individual friend recommendations
收藏 引用
science China(Information sciences) 2017年 第11期60卷 43-64页
作者: Jibing GONG Xiaoxia GAO Hong CHENG Jihui LIU Yanqing SONG Mantang ZHANG Yi ZHAO School of Information Science and Engineering Yanshan University The Key Lab for Computer Virtual Technology and System Integration Yanshan University State Key Lab of Mathematical Engineering and Advanced Computing Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong
Friend recommendation is a fundamental service in both social networks and practical applications,and is influenced by user behaviors such as interactions, interests, and activities. In this study, we first conduct in... 详细信息
来源: 评论
Adaptive morphological reconstruction for seeded image segmentation
arXiv
收藏 引用
arXiv 2019年
作者: Lei, Tao Jia, Xiaohong Liu, Tongliang Liu, Shigang Meng, Hongying Nandi, Asoke K. School of Electronical and Information Engineering Shaanxi University of Science and Technology Xi’an710021 China School of Computer Science Northwestern Polytechnical University Xi’an710072 China School of Electronical and Information Engineering Shaanxi University of Science and Technology Xi’an710021 China School of Computer Science University of Sydney Sydney Australia School of Computer Science Shaanxi Normal University Xi’an710119 China Department of Electronic and Computer Engineering Brunel University London Uxbridge MiddlesexUB8 3PH United Kingdom Department of Electronic and Computer Engineering Brunel University London Uxbridge MiddlesexUB8 3PH United Kingdom Key Laboratory of Embedded Systems and Service Computing Col- lege of Electronic and Information Engineering Tongji University Shanghai200092 China
—Morphological reconstruction (MR) is often employed by seeded image segmentation algorithms such as watershed transform and power watershed as it is able to filter seeds (regional minima) to reduce over-segmentation... 详细信息
来源: 评论
computer-Aided System for the Detection of Multicategory Pulmonary Tuberculosis in Radiographs
收藏 引用
Journal of Healthcare Engineering 2020年 第1期2020卷
作者: Yilin Xie Zhuoyue Wu Xin Han Hongyu Wang Yifan Wu Lei Cui Jun Feng Zhaohui Zhu Zhongyuanlong Chen Department of Information Science and Technology Northwest University Xi’an Shaanxi 710127 *** School of Computer Science and Technology Xi’an University of Posts and Telecommunications Xi’an Shaanxi 710121 *** Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing Xi’an University of Posts and Telecommunications Xi’an Shaanxi 710121 *** State-Province Joint Engineering and Research Center of Advanced Networking and Intelligent Information Services School of Information Science and Technology Northwest University Xi’an 710127 Shaanxi *** Chest Hospital of Xinjiang Uyghur Autonomous Region of the PRC Urumqi Xinjiang Uygur Autonomous Region 830049 China
The early screening and diagnosis of tuberculosis plays an important role in the control and treatment of tuberculosis infections. In this paper, an integrated computer-aided system based on deep learning is proposed ...
来源: 评论
Walk-steered convolution for graph classification
arXiv
收藏 引用
arXiv 2018年
作者: Jiang, Jiatao Xu, Chunyan Cui, Zhen Zhang, Tong Zheng, Wenming Yang, Jian Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of the Ministry of Education School of Computer Science and Engineering University of Science and Technology Jiangsu Key Lab of Image and Video Understanding for Social Security School of Computer Science and Engineering University of Science and Technology Nanjing210094 China Key Laboratory of Child Development and Learning Science of the Ministry of Education School of Biological Science and Medical Engineering Southeast University Nanjing210096 China
Graph classification is a fundamental but challenging issue for numerous real-world applications. Despite recent great progress in image/video classification, convolutional neural networks (CNNs) cannot yet cater to g... 详细信息
来源: 评论