knowledge Graphs (KGs) often suffer from incompleteness and this issue motivates the task of knowledge Graph Completion (KGC). Traditional KGC models mainly concentrate on static KGs with a fixed set of entities and r...
详细信息
knowledge Graphs (KGs) often suffer from incompleteness and this issue motivates the task of knowledge Graph Completion (KGC). Traditional KGC models mainly concentrate on static KGs with a fixed set of entities and relations, or dynamic KGs with temporal characteristics, faltering in their generalization to constantly evolving KGs with possible irregular entity drift. Thus, in this paper, we propose a novel link prediction model based on the embedding representation to handle the incompleteness of KGs with entity drift, termed as DCEL. Unlike traditional link prediction, DCEL could generate precise embeddings for drifted entity without imposing any regular temporal characteristic. The drifted entity is added into the KG with its links to the existing entity predicted in an incremental fashion with no requirement to retrain the whole KG for computational efficiency. In terms of DCEL model, it fully takes advantages of unstructured textual description, and is composed of four modules, namely MRC (Machine Reading Comprehension), RCAA (Relation Constraint Attentive Aggregator), RSA (Relation Specific Alignment) and RCEO (Relation Constraint Embedding Optimization). Specifically, the MRC module is first employed to extract short texts from long and redundant descriptions. Then, RCAA is used to aggregate the embeddings of textual description of drifted entity and the pre-trained word embeddings learned from corpus to a single text-based entity embedding while shielding the impact of noise and irrelevant information. After that, RSA is applied to align the text-based entity embedding to graph-based space to obtain the corresponding graph-based entity embedding, and then the learned embeddings are fed into the gate structure to be optimized based on the RCEO to improve the accuracy of representation learning. Finally, the graph-based model TransE is used to perform link prediction for drifted entity. Extensive experiments conducted on benchmark datasets in terms of evaluat
作者:
Lisi WeiLibo ZhaoXiaoli ZhangCollege of Computer Science and Technology
Jilin University China College of Artificial Intelligence and Big Data Hulunbuir University China and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University China College of Computer Science and Technology
Jilin University China and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University China
Due to the limitations of imaging sensors, obtaining a medical image that simultaneously captures both functional metabolic data and structural tissue details remains a significant challenge in clinical diagnosis. To ...
详细信息
Due to the limitations of imaging sensors, obtaining a medical image that simultaneously captures both functional metabolic data and structural tissue details remains a significant challenge in clinical diagnosis. To address this, Multimodal Medical Image Fusion (MMIF) has emerged as an effective technique for integrating complementary information from multimodal source images, such as CT, PET, and SPECT, which is critical for providing a comprehensive understanding of both anatomical and functional aspects of the human body. One of the key challenges in MMIF is how to exchange and aggregate this multimodal information. This paper rethinks MMIF by addressing the harmony of modality gaps and proposes a novel Modality-Aware Interaction Network (MAINet), which leverages cross-modal feature interaction and progressively fuses multiple features in graph space. Specifically, we introduce two key modules: the Cascade Modality Interaction (CMI) module and the Dual-Graph Learning (DGL) module. The CMI module, integrated within a multi-scale encoder with triple branches, facilitates complementary multimodal feature learning and provides beneficial feedback to enhance discriminative feature learning across modalities. In the decoding process, the DGL module aggregates hierarchical features in two distinct graph spaces, enabling global feature interactions. Moreover, the DGL module incorporates a bottom-up guidance mechanism, where deeper semantic features guide the learning of shallower detail features, thus improving the fusion process by enhancing both scale diversity and modality awareness for visual fidelity results. Experimental results on medical image datasets demonstrate the superiority of the proposed method over existing fusion approaches in both subjective and objective evaluations. We also validated the performance of the proposed method in applications such as infrared-visible image fusion and medical image segmentation.
Distributed Collaborative Machine Learning (DCML) has emerged in artificial intelligence-empowered edge computing environments, such as the Industrial Internet of Things (IIoT), to process tremendous data generated by...
详细信息
Distributed Collaborative Machine Learning (DCML) has emerged in artificial intelligence-empowered edge computing environments, such as the Industrial Internet of Things (IIoT), to process tremendous data generated by smart devices. However, parallel DCML frameworks require resource-constrained devices to update the entire Deep Neural Network (DNN) models and are vulnerable to reconstruction attacks. Concurrently, the serial DCML frameworks suffer from training efficiency problems due to their serial training nature. In this paper, we propose a Model Pruning-enabled Federated Split Learning framework (MP-FSL) to reduce resource consumption with a secure and efficient training scheme. Specifically, MP-FSL compresses DNN models by adaptive channel pruning and splits each compressed model into two parts that are assigned to the client and the server. Meanwhile, MP-FSL adopts a novel aggregation algorithm to aggregate the pruned heterogeneous models. We implement MP-FSL with a real FL platform to evaluate its performance. The experimental results show that MP-FSL outperforms the state-of-the-art frameworks in model accuracy by up to 1.35%, while concurrently reducing storage and computational resource consumption by up to 32.2% and 26.73%, respectively. These results demonstrate that MP-FSL is a comprehensive solution to the challenges faced by DCML, with superior performance in both reduced resource consumption and enhanced model performance.
暂无评论