咨询与建议

限定检索结果

文献类型

  • 1,107 篇 期刊文献
  • 885 篇 会议
  • 1 册 图书

馆藏范围

  • 1,993 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,288 篇 工学
    • 701 篇 计算机科学与技术...
    • 571 篇 软件工程
    • 183 篇 电子科学与技术(可...
    • 176 篇 信息与通信工程
    • 172 篇 电气工程
    • 124 篇 控制科学与工程
    • 123 篇 化学工程与技术
    • 112 篇 材料科学与工程(可...
    • 95 篇 生物工程
    • 86 篇 光学工程
    • 79 篇 网络空间安全
    • 68 篇 机械工程
    • 59 篇 仪器科学与技术
    • 56 篇 核科学与技术
    • 55 篇 力学(可授工学、理...
    • 50 篇 生物医学工程(可授...
    • 43 篇 动力工程及工程热...
    • 35 篇 冶金工程
  • 1,018 篇 理学
    • 553 篇 物理学
    • 386 篇 数学
    • 124 篇 统计学(可授理学、...
    • 120 篇 化学
    • 116 篇 生物学
    • 79 篇 地球物理学
    • 60 篇 系统科学
  • 220 篇 管理学
    • 141 篇 管理科学与工程(可...
    • 85 篇 图书情报与档案管...
    • 34 篇 工商管理
  • 40 篇 医学
    • 33 篇 临床医学
  • 38 篇 法学
    • 32 篇 社会学
  • 16 篇 经济学
  • 16 篇 军事学
  • 13 篇 农学
  • 9 篇 教育学
  • 4 篇 文学
  • 1 篇 艺术学

主题

  • 40 篇 feature extracti...
  • 36 篇 semantics
  • 35 篇 deep learning
  • 30 篇 machine learning
  • 29 篇 cosmic rays
  • 29 篇 network security
  • 28 篇 training
  • 26 篇 security
  • 24 篇 cryptography
  • 23 篇 software
  • 20 篇 malware
  • 20 篇 gamma rays
  • 17 篇 optimization
  • 17 篇 computational mo...
  • 17 篇 data models
  • 16 篇 algorithm design...
  • 14 篇 network topology
  • 14 篇 topology
  • 13 篇 data mining
  • 12 篇 computer archite...

机构

  • 622 篇 state key labora...
  • 110 篇 university of sc...
  • 100 篇 hebei normal uni...
  • 100 篇 state key labora...
  • 99 篇 tianfu cosmic ra...
  • 99 篇 university of ch...
  • 97 篇 yunnan observato...
  • 87 篇 department of ph...
  • 87 篇 key laboratory f...
  • 87 篇 school of physic...
  • 84 篇 center for astro...
  • 83 篇 college of physi...
  • 82 篇 school of physic...
  • 81 篇 moscow institute...
  • 80 篇 institute of fro...
  • 80 篇 school of physic...
  • 80 篇 national space s...
  • 78 篇 school of astron...
  • 66 篇 national astrono...
  • 66 篇 department of en...

作者

  • 81 篇 axikegu
  • 78 篇 fang j.
  • 78 篇 feng c.f.
  • 77 篇 jiang k.
  • 76 篇 bastieri d.
  • 72 篇 danzengluobu
  • 71 篇 liu d.
  • 70 篇 kuleshov d.
  • 68 篇 li cheng
  • 68 篇 chen m.j.
  • 68 篇 liu s.m.
  • 68 篇 huang d.h.
  • 68 篇 dai h.l.
  • 67 篇 guo y.q.
  • 66 篇 li xin
  • 66 篇 bao y.w.
  • 66 篇 liu b.
  • 65 篇 hu h.b.
  • 62 篇 min z.
  • 59 篇 qin j.j.

语言

  • 1,800 篇 英文
  • 152 篇 其他
  • 45 篇 中文
检索条件"机构=State Key Laboratory of Mathematical Engineering and advanced Computing"
1993 条 记 录,以下是1071-1080 订阅
排序:
Automatic Mining of Security-Sensitive Functions from Source Code
收藏 引用
Computers, Materials & Continua 2018年 第8期56卷 199-210页
作者: Lin Chen Chunfang Yang Fenlin Liu Daofu Gong Shichang Ding Zhengzhou Science and Technology Institute Zhengzhou450001China State Key Laboratory of Mathematical Engineering and Advanced Computing Zhengzhou450001China University of Göttingen Goldschmidtstr.737077 GöttingenGermany
When dealing with the large-scale program,many automatic vulnerability mining techniques encounter such problems as path explosion,state explosion,and low *** of large-scale programs based on safety-sensitive function... 详细信息
来源: 评论
Space-variant Shack-Hartmann wavefront sensing based on affine transformation estimation
arXiv
收藏 引用
arXiv 2022年
作者: Feng, Fan Liang, Chen Chen, Dongdong Du, Ke Yang, Runjia Lu, Chang Chen, Shumin Chen, Liangyi Tao, Louis Mao, Heng Center for Bioinformatics National Laboratory of Protein Engineering and Plant Genetic Engineering School of Life Sciences Peking University Beijing100871 China LMAM School of Mathematical Sciences Peking University Beijing100871 China School of Software and Microelectronics Peking University Beijing100871 China State Key Laboratory of Membrane Biology Beijing Key Laboratory of Cardiometabolic Molecular Medicine Institute of Molecular Medicine Center for Life Sciences College of Future Technology Peking University Beijing100871 China School of Instrumentation and Optoelectronic Engineering Beihang University Beijing100191 China PKU-IDG/McGovern Institute for Brain Research Beijing100871 China Beijing Academy of Artificial Intelligence Beijing100871 China Center for Quantitative Biology Peking University Beijing100871 China Beijing Advanced Innovation Center for Imaging Theory and Technology Capital Normal University Beijing100871 China
The space-variant wavefront reconstruction problem inherently exists in deep tissue imaging. In this paper, we propose a framework of Shack-Hartmann wavefront space-variant sensing with extended source illumination. T... 详细信息
来源: 评论
Toward constraining QCD phase transitions in neutron star interiors: Bayesian inference with a Tolman-Oppenheimer-Volkof linear response analysis
收藏 引用
Physical Review D 2025年 第7期111卷 074026-074026页
作者: Ronghao Li (李荣浩) Sophia Han (韩君) Zidu Lin (林子都) Lingxiao Wang (王凌霄) Kai Zhou (周凯) Shuzhe Shi (施舒哲) Department of Physics Tsinghua University Beijing 100084 China Tsung-Dao Lee Institute Shanghai Jiao Tong University Shanghai 201210 China School of Physics and Astronomy Shanghai Jiao Tong University Shanghai 200240 China University of Tennessee Knoxville Tennessee 37996 USA RIKEN Center for Interdisciplinary Theoretical and Mathematical Sciences(iTHEMS) Wako Saitama 351-0198 Japan School of Science and Engineering The Chinese University of Hong Kong Shenzhen (CUHK-Shenzhen) Guangdong 518172 China Frankfurt Institute for Advanced Studies Ruth Moufang Strasse 1 D-60438 Frankfurt am Main Germany State Key Laboratory of Low-Dimensional Quantum Physics Tsinghua University Beijing 100084 China
The potential hadron-to-quark phase transition in neutron stars has not been fully understood as the property of cold, dense, and strongly interacting matter cannot be theoretically described by the first-principle pe...
来源: 评论
Investigation of the Ultra-High-Energy gamma-ray emission from the Northern Fermi Bubble with LHAASO-KM2A
Investigation of the Ultra-High-Energy gamma-ray emission fr...
收藏 引用
38th International Cosmic Ray Conference, ICRC 2023
作者: Zhang, Yi He, Jiayin Zhang, Rui Zhao, Shiping Cao, Zhen Aharonian, F. An, Q. Axikegu Bai, Y.X. Bao, Y.W. Bastieri, D. Bi, X.J. Bi, Y.J. Cai, J.T. Cao, Q. Cao, W.Y. Cao, Zhe Chang, J. Chang, J.F. Chen, A.M. Chen, E.S. Chen, Liang Chen, Lin Chen, Long Chen, M.J. Chen, M.L. Chen, Q.H. Chen, S.H. Chen, S.Z. Chen, T.L. Chen, Y. Cheng, N. Cheng, Y.D. Cui, M.Y. Cui, S.W. Cui, X.H. Cui, Y.D. Dai, B.Z. Dai, H.L. Dai, Z.G. Danzengluobu della Volpe, D. Dong, X.Q. Duan, K.K. Fan, J.H. Fan, Y.Z. Fang, J. Fang, K. Feng, C.F. Feng, L. Feng, S.H. Feng, X.T. Feng, Y.L. Gabici, S. Gao, B. Gao, C.D. Gao, L.Q. Gao, Q. Gao, W. Gao, W.K. Ge, M.M. Geng, L.S. Giacinti, G. Gong, G.H. Gou, Q.B. Gu, M.H. Guo, F.L. Guo, X.L. Guo, Y.Q. Guo, Y.Y. Han, Y.A. He, H.H. He, H.N. He, J.Y. He, X.B. He, Y. Heller, M. Hor, Y.K. Hou, B.W. Hou, C. Hou, X. Hu, H.B. Hu, Q. Hu, S.C. Huang, D.H. Huang, T.Q. Huang, W.J. Huang, X.T. Huang, X.Y. Huang, Y. Huang, Z.C. Ji, X.L. Jia, H.Y. Jia, K. Jiang, K. Jiang, X.W. Jiang, Z.J. Jin, M. Kang, M.M. Ke, T. Kuleshov, D. Kurinov, K. Li, B.B. Li, Cheng Li, Cong Li, D. Li, F. Li, H.B. Li, H.C. Li, H.Y. Li, J. Li, Jian Li, Jie Li, K. Li, W.L. Li, W.L. Li, X.R. Li, Xin Li, Y.Z. Li, Zhe Li, Zhuo Liang, E.W. Liang, Y.F. Lin, S.J. Liu, B. Liu, C. Liu, D. Liu, H. Liu, H.D. Liu, J. Liu, J.L. Liu, J.Y. Liu, M.Y. Liu, R.Y. Liu, S.M. Liu, W. Liu, Y. Liu, Y.N. Lu, R. Luo, Q. Lv, H.K. Ma, B.Q. Ma, L.L. Ma, X.H. Mao, J.R. Min, Z. Mitthumsiri, W. Mu, H.J. Nan, Y.C. Neronov, A. Ou, Z.W. Pang, B.Y. Pattarakijwanich, P. Pei, Z.Y. Qi, M.Y. Qi, Y.Q. Qiao, B.Q. Qin, J.J. Ruffolo, D. Sáiz, A. Semikoz, D. Shao, C.Y. Shao, L. Shchegolev, O. Sheng, X.D. Shu, F.W. Song, H.C. Stenkin, Yu.V. Stepanov, V. Su, Y. Sun, Q.N. Sun, X.N. Key Laboratory of Dark Matter and Space Astronomy Purple Mountain Observatory Chinese Academy of Sciences 9 Jiangsu Nanjing210023 China University of Science and Technology of China Anhui Hefei230026 China Institute of Frontier and Interdisciplinary Science Shandong University Shandong Qingdao266237 China Key Laboratory of Particle Astrophysics & Experimental Physics Division & Computing Center Institute of High Energy Physics Chinese Academy of Sciences Beijing100049 China University of Chinese Academy of Sciences Beijing100049 China TIANFU Cosmic Ray Research Center Sichuan Chengdu China Dublin Institute for Advanced Studies 31 Fitzwilliam Place Dublin 2 Ireland Max-Planck-Institut for Nuclear Physics P.O. Box 103980 Heidelberg69029 Germany State Key Laboratory of Particle Detection and Electronics China School of Physical Science and Technology School of Information Science and Technology Southwest Jiaotong University Sichuan Chengdu610031 China School of Astronomy and Space Science Nanjing University Jiangsu Nanjing210023 China Center for Astrophysics Guangzhou University Guangdong Guangzhou510006 China Hebei Normal University Hebei Shijiazhuang050024 China Key Laboratory of Dark Matter and Space Astronomy Key Laboratory of Radio Astronomy Purple Mountain Observatory Chinese Academy of Sciences Jiangsu Nanjing210023 China Tsung-Dao Lee Institute School of Physics and Astronomy Shanghai Jiao Tong University Shanghai200240 China Key Laboratory for Research in Galaxies and Cosmology Shanghai Astronomical Observatory Chinese Academy of Sciences Shanghai200030 China Key Laboratory of Cosmic Rays [Tibet University Ministry of Education Tibet Lhasa850000 China National Astronomical Observatories Chinese Academy of Sciences Beijing100101 China Sun Yat-sen University 519000 Zhuhai Guangdong Guangzhou510275 China School of Physics and Astronomy Yunnan University Yunnan Kunming650091 China Département de Physique Nucléaire et Cor
We analyze gamma-ray emission from the Northern Fermi bubble region at the ultra-high-energy range, using the data collected by LHAASO-KM2A from December 2019 to September 2022. Employing an improved gamma/hadron sepa... 详细信息
来源: 评论
Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation
Cross-domain Object Detection through Coarse-to-Fine Feature...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Yangtao Zheng Di Huang Songtao Liu Yunhong Wang Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University State Key Laboratory of Software Development Environment Beihang University School of Computer Science and Engineering Beihang University Beijing China
Recent years have witnessed great progress in deep learning based object detection. However, due to the domain shift problem, applying off-the-shelf detectors to an unseen domain leads to significant performance drop.... 详细信息
来源: 评论
Self-embedding Image Watermarking based on Combined Decision Using Pre-offset and Post-offset Blocks
收藏 引用
Computers, Materials & Continua 2018年 第11期57卷 243-260页
作者: Daofu Gong Yan Chen Haoyu Lu Zhenyu Li Yibing Han Zhengzhou Science and Technology Institute Zhengzhou450001China State Key Laboratory of Mathematical Engineering and Advanced Computing Zhengzhou450001China Department of Computer Science University of YorkYork YO105GHUK
To detect and recover random tampering areas,a combined-decision-based self-embedding watermarking scheme is proposed *** this scheme,the image is first partitioned into 2×2 size ***,the high 5 bits of a block’s... 详细信息
来源: 评论
SURE-based Stopping Strategy for Fine-tunable Supervised PET Image Denoising
SURE-based Stopping Strategy for Fine-tunable Supervised PET...
收藏 引用
IEEE Symposium on Nuclear Science (NSS/MIC)
作者: Jianan Cui Kuang Gong Ning Guo Scott Wollenweber Floris Jansen Huafeng Liu Quanzheng Li State Key Laboratory of Modern Optical Instrumentation College of Optical Science and Engineering Zhejiang University Hangzhou China Center for Advanced Medical Computing and Analysis Massachusetts General Hospital/Harvard Medical School Boston MA USA Gordon Center for Medical Imaging Massachusetts General Hospital/Harvard Medical School Boston MA USA GE Healthcare Waukesha USA
Previously, based on the unsupervised deep learning method, conditional deep image prior (CDIP), we showed the possibility of finetuning during the testing phase after supervised learning. However, one barrier for CDI... 详细信息
来源: 评论
An Image Steganography Algorithm Based on Quantization Index Modulation Resisting Scaling Attacks and Statistical Detection
收藏 引用
Computers, Materials & Continua 2018年 第7期56卷 151-167页
作者: Yue Zhang Dengpan Ye Junjun Gan Zhenyu Li Qingfeng Cheng State Key Laboratory of Mathematical Engineering and Advanced Computing Zhengzhou 450001China Computer School of Wuhan University Wuhan 430072China Department of Computer Science University of YorkYork YO105GHUK
In view of the fact that the current adaptive steganography algorithms are difficult to resist scaling attacks and that a method resisting scaling attack is only for the nearest neighbor interpolation method,this pape... 详细信息
来源: 评论
Author Correction: An optoelectrochemical synapse based on a single-component n-type mixed conductor
收藏 引用
Nature communications 2025年 第1期16卷 5045页
作者: Yazhou Wang Wentao Shan Hanrui Li Yizhou Zhong Shofarul Wustoni Johana Uribe Tianrui Chang Valentina E Musteata Tania Cecilia Hidalgo Castillo Wan Yue Haifeng Ling Nazek El-Atab Sahika Inal Organic Bioelectronics Laboratory Biological and Environmental Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia. Smart Advanced Memory Devices and Applications (SAMA) Laboratory Computer Electrical Mathematical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia. Imaging and Characterization Core Lab King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia. School of Materials Science and Engineering State Key Laboratory of Optoelectronic Materials and Technologies Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices Sun Yat-sen University Guangzhou 510275 China. State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM) Nanjing University of Posts & Telecommunications Nanjing 210023 China. Organic Bioelectronics Laboratory Biological and Environmental Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia. sahika.inal@kaust.edu.sa.
来源: 评论
A Pipelining Loop Optimization Method for Dataflow Architecture
收藏 引用
Journal of Computer Science & Technology 2018年 第1期33卷 116-130页
作者: Xu Tan Xiao-Chun Ye Xiao-Wei Shen Yuan-Chao Xu Da Wang Lunkai Zhang Wen-Ming Li Dong-Rui Fan Zhi-Min Tang State Key Laboratory of Computer Architecture Institute of Computing Technology Chinese Academy of Sciences Beijing 100190 China School of Computer and Control Engineering University of Chinese Academy of Sciences Beijing 1000J9 China State Key Laboratory of Mathematical Engineering and Advanced Computing Wuxi 214125 China College of Information Engineering Capital Normal University Beijing 100048 China Department of Computer Science The University of Chicago Chicago IL 60637 U.S.A.
With the coming of exascale supercomputing era, power efficiency has become the most important obstacle to build an exascale system. Dataflow architecture has native advantage in achieving high power efficiency for sc... 详细信息
来源: 评论