咨询与建议

限定检索结果

文献类型

  • 809 篇 会议
  • 771 篇 期刊文献

馆藏范围

  • 1,580 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,014 篇 工学
    • 625 篇 计算机科学与技术...
    • 504 篇 软件工程
    • 151 篇 信息与通信工程
    • 133 篇 电子科学与技术(可...
    • 126 篇 电气工程
    • 99 篇 控制科学与工程
    • 86 篇 化学工程与技术
    • 80 篇 生物工程
    • 76 篇 网络空间安全
    • 74 篇 材料科学与工程(可...
    • 70 篇 光学工程
    • 52 篇 机械工程
    • 49 篇 仪器科学与技术
    • 41 篇 生物医学工程(可授...
    • 35 篇 动力工程及工程热...
    • 28 篇 核科学与技术
    • 26 篇 力学(可授工学、理...
    • 26 篇 冶金工程
    • 26 篇 安全科学与工程
  • 742 篇 理学
    • 421 篇 物理学
    • 251 篇 数学
    • 95 篇 生物学
    • 91 篇 统计学(可授理学、...
    • 85 篇 化学
    • 73 篇 地球物理学
    • 39 篇 系统科学
  • 185 篇 管理学
    • 120 篇 管理科学与工程(可...
    • 71 篇 图书情报与档案管...
    • 28 篇 工商管理
  • 30 篇 法学
    • 25 篇 社会学
  • 27 篇 医学
  • 15 篇 经济学
  • 14 篇 军事学
  • 11 篇 农学
  • 8 篇 教育学
  • 2 篇 文学
  • 1 篇 艺术学

主题

  • 36 篇 feature extracti...
  • 32 篇 deep learning
  • 30 篇 semantics
  • 29 篇 network security
  • 28 篇 cosmic rays
  • 26 篇 training
  • 25 篇 security
  • 24 篇 machine learning
  • 23 篇 software
  • 20 篇 malware
  • 20 篇 gamma rays
  • 19 篇 cryptography
  • 16 篇 computational mo...
  • 16 篇 data models
  • 15 篇 algorithm design...
  • 13 篇 data mining
  • 12 篇 network topology
  • 12 篇 optimization
  • 11 篇 deep neural netw...
  • 11 篇 computer archite...

机构

  • 626 篇 state key labora...
  • 104 篇 university of sc...
  • 96 篇 hebei normal uni...
  • 96 篇 state key labora...
  • 95 篇 tianfu cosmic ra...
  • 93 篇 yunnan observato...
  • 91 篇 university of ch...
  • 86 篇 department of ph...
  • 85 篇 key laboratory f...
  • 83 篇 school of physic...
  • 82 篇 center for astro...
  • 81 篇 college of physi...
  • 80 篇 school of physic...
  • 80 篇 moscow institute...
  • 80 篇 school of astron...
  • 79 篇 institute of fro...
  • 79 篇 national space s...
  • 78 篇 school of physic...
  • 70 篇 department of en...
  • 68 篇 national astrono...

作者

  • 82 篇 axikegu
  • 78 篇 fang j.
  • 78 篇 feng c.f.
  • 78 篇 jiang k.
  • 77 篇 bastieri d.
  • 77 篇 danzengluobu
  • 71 篇 kuleshov d.
  • 70 篇 liu d.
  • 70 篇 liu s.m.
  • 70 篇 huang d.h.
  • 70 篇 dai h.l.
  • 70 篇 guo y.q.
  • 69 篇 li cheng
  • 69 篇 chen m.j.
  • 69 篇 bao y.w.
  • 68 篇 hu h.b.
  • 67 篇 liu b.
  • 65 篇 li xin
  • 63 篇 min z.
  • 62 篇 liu h.d.

语言

  • 1,487 篇 英文
  • 58 篇 其他
  • 38 篇 中文
检索条件"机构=State Key Laboratory of Mathemsatical Engineering and Advanced Computing"
1580 条 记 录,以下是801-810 订阅
排序:
Spatial Multiplexing with Limited RF Chains: Generalized Beamspace Modulation (GBM) for mmWave Massive MIMO
Spatial Multiplexing with Limited RF Chains: Generalized Bea...
收藏 引用
作者: Gao, Shijian Cheng, Xiang Yang, Liuqing Department of Electrical and Computer Engineering Colorado State University Fort CollinsCO United States Department of Electronics State Key Laboratory of Advanced Optical Communication Systems and Networks School of Electronics Engineering and Computing Sciences Peking University Beijing China
Millimeter wave (mmWave) massive multiple-input multiple-output (mMIMO) has been recognized as a promising candidate for 5G communications for its capability of supporting Gb/s transmission. However, it is a common ex... 详细信息
来源: 评论
Probing disorder-induced time-reversal symmetry breaking in Josephson junctions
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Yu Huang, Daiqiang Zhang, Huanyu Guarino, Anita Fittipaldi, Rosalba Ma, Chao Hu, Wenjie Niu, Chang Wang, Zhen Yu, Weichao Yerin, Yuriy Vecchione, Antonio Liu, Yang Cuoco, Mario Guo, Hangwen Shen, Jian State Key Laboratory of Surface Physics Institute for Nanoelectronic Devices and Quantum Computing Fudan University Shanghai200433 China Department of Physics Fudan University Shanghai200433 China International Center for Quantum Materials Peking University Beijing100871 China FiscianoI-84084 Italy College of Materials Science and Engineering Hunan University Changsha410082 China Department of Physics University of Science and Technology of China Anhui Hefei230026 China Zhangjiang Fudan International Innovation Center Fudan University Shanghai201210 China CNR-SPIN via del Fosso del Cavaliere 100 Roma00133 Italy Shanghai Research Center for Quantum Sciences Shanghai201315 China Collaborative Innovation Center of Advanced Microstructures Nanjing210093 China
The relation between superconductivity and time-reversal symmetry (TRS) is one of the most fascinating problems in condensed matter physics. Although most superconductors inherently possess TRS, nonmagnetic disorder c... 详细信息
来源: 评论
A Formal Verification Method for Security Protocol Implementations Based on Model Learning and Tamarin
收藏 引用
Journal of Physics: Conference Series 2021年 第1期1871卷
作者: Xieli Zhang Yuefei Zhu Chunxiang Gu Xuyang Miao State Key Laboratory of Mathematical Engineering and Advanced Computing Zhengzhou Henan 450001 China Henan Key Laboratory of Network Cryptography Technology Zhengzhou Henan 450002 China
The verification of security protocol implementations is notoriously difficult and important. In this paper, combining with the model learning using Tamarin, a formal verification tool of protocol specification, a for...
来源: 评论
Investigation of the Ultra-High-Energy gamma-ray emission from the Northern Fermi Bubble with LHAASO-KM2A
Investigation of the Ultra-High-Energy gamma-ray emission fr...
收藏 引用
38th International Cosmic Ray Conference, ICRC 2023
作者: Zhang, Yi He, Jiayin Zhang, Rui Zhao, Shiping Cao, Zhen Aharonian, F. An, Q. Axikegu Bai, Y.X. Bao, Y.W. Bastieri, D. Bi, X.J. Bi, Y.J. Cai, J.T. Cao, Q. Cao, W.Y. Cao, Zhe Chang, J. Chang, J.F. Chen, A.M. Chen, E.S. Chen, Liang Chen, Lin Chen, Long Chen, M.J. Chen, M.L. Chen, Q.H. Chen, S.H. Chen, S.Z. Chen, T.L. Chen, Y. Cheng, N. Cheng, Y.D. Cui, M.Y. Cui, S.W. Cui, X.H. Cui, Y.D. Dai, B.Z. Dai, H.L. Dai, Z.G. Danzengluobu della Volpe, D. Dong, X.Q. Duan, K.K. Fan, J.H. Fan, Y.Z. Fang, J. Fang, K. Feng, C.F. Feng, L. Feng, S.H. Feng, X.T. Feng, Y.L. Gabici, S. Gao, B. Gao, C.D. Gao, L.Q. Gao, Q. Gao, W. Gao, W.K. Ge, M.M. Geng, L.S. Giacinti, G. Gong, G.H. Gou, Q.B. Gu, M.H. Guo, F.L. Guo, X.L. Guo, Y.Q. Guo, Y.Y. Han, Y.A. He, H.H. He, H.N. He, J.Y. He, X.B. He, Y. Heller, M. Hor, Y.K. Hou, B.W. Hou, C. Hou, X. Hu, H.B. Hu, Q. Hu, S.C. Huang, D.H. Huang, T.Q. Huang, W.J. Huang, X.T. Huang, X.Y. Huang, Y. Huang, Z.C. Ji, X.L. Jia, H.Y. Jia, K. Jiang, K. Jiang, X.W. Jiang, Z.J. Jin, M. Kang, M.M. Ke, T. Kuleshov, D. Kurinov, K. Li, B.B. Li, Cheng Li, Cong Li, D. Li, F. Li, H.B. Li, H.C. Li, H.Y. Li, J. Li, Jian Li, Jie Li, K. Li, W.L. Li, W.L. Li, X.R. Li, Xin Li, Y.Z. Li, Zhe Li, Zhuo Liang, E.W. Liang, Y.F. Lin, S.J. Liu, B. Liu, C. Liu, D. Liu, H. Liu, H.D. Liu, J. Liu, J.L. Liu, J.Y. Liu, M.Y. Liu, R.Y. Liu, S.M. Liu, W. Liu, Y. Liu, Y.N. Lu, R. Luo, Q. Lv, H.K. Ma, B.Q. Ma, L.L. Ma, X.H. Mao, J.R. Min, Z. Mitthumsiri, W. Mu, H.J. Nan, Y.C. Neronov, A. Ou, Z.W. Pang, B.Y. Pattarakijwanich, P. Pei, Z.Y. Qi, M.Y. Qi, Y.Q. Qiao, B.Q. Qin, J.J. Ruffolo, D. Sáiz, A. Semikoz, D. Shao, C.Y. Shao, L. Shchegolev, O. Sheng, X.D. Shu, F.W. Song, H.C. Stenkin, Yu.V. Stepanov, V. Su, Y. Sun, Q.N. Sun, X.N. Key Laboratory of Dark Matter and Space Astronomy Purple Mountain Observatory Chinese Academy of Sciences 9 Jiangsu Nanjing210023 China University of Science and Technology of China Anhui Hefei230026 China Institute of Frontier and Interdisciplinary Science Shandong University Shandong Qingdao266237 China Key Laboratory of Particle Astrophysics & Experimental Physics Division & Computing Center Institute of High Energy Physics Chinese Academy of Sciences Beijing100049 China University of Chinese Academy of Sciences Beijing100049 China TIANFU Cosmic Ray Research Center Sichuan Chengdu China Dublin Institute for Advanced Studies 31 Fitzwilliam Place Dublin 2 Ireland Max-Planck-Institut for Nuclear Physics P.O. Box 103980 Heidelberg69029 Germany State Key Laboratory of Particle Detection and Electronics China School of Physical Science and Technology School of Information Science and Technology Southwest Jiaotong University Sichuan Chengdu610031 China School of Astronomy and Space Science Nanjing University Jiangsu Nanjing210023 China Center for Astrophysics Guangzhou University Guangdong Guangzhou510006 China Hebei Normal University Hebei Shijiazhuang050024 China Key Laboratory of Dark Matter and Space Astronomy Key Laboratory of Radio Astronomy Purple Mountain Observatory Chinese Academy of Sciences Jiangsu Nanjing210023 China Tsung-Dao Lee Institute School of Physics and Astronomy Shanghai Jiao Tong University Shanghai200240 China Key Laboratory for Research in Galaxies and Cosmology Shanghai Astronomical Observatory Chinese Academy of Sciences Shanghai200030 China Key Laboratory of Cosmic Rays [Tibet University Ministry of Education Tibet Lhasa850000 China National Astronomical Observatories Chinese Academy of Sciences Beijing100101 China Sun Yat-sen University 519000 Zhuhai Guangdong Guangzhou510275 China School of Physics and Astronomy Yunnan University Yunnan Kunming650091 China Département de Physique Nucléaire et Cor
We analyze gamma-ray emission from the Northern Fermi bubble region at the ultra-high-energy range, using the data collected by LHAASO-KM2A from December 2019 to September 2022. Employing an improved gamma/hadron sepa... 详细信息
来源: 评论
Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation
Cross-domain Object Detection through Coarse-to-Fine Feature...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Yangtao Zheng Di Huang Songtao Liu Yunhong Wang Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University State Key Laboratory of Software Development Environment Beihang University School of Computer Science and Engineering Beihang University Beijing China
Recent years have witnessed great progress in deep learning based object detection. However, due to the domain shift problem, applying off-the-shelf detectors to an unseen domain leads to significant performance drop.... 详细信息
来源: 评论
SURE-based Stopping Strategy for Fine-tunable Supervised PET Image Denoising
SURE-based Stopping Strategy for Fine-tunable Supervised PET...
收藏 引用
IEEE Symposium on Nuclear Science (NSS/MIC)
作者: Jianan Cui Kuang Gong Ning Guo Scott Wollenweber Floris Jansen Huafeng Liu Quanzheng Li State Key Laboratory of Modern Optical Instrumentation College of Optical Science and Engineering Zhejiang University Hangzhou China Center for Advanced Medical Computing and Analysis Massachusetts General Hospital/Harvard Medical School Boston MA USA Gordon Center for Medical Imaging Massachusetts General Hospital/Harvard Medical School Boston MA USA GE Healthcare Waukesha USA
Previously, based on the unsupervised deep learning method, conditional deep image prior (CDIP), we showed the possibility of finetuning during the testing phase after supervised learning. However, one barrier for CDI... 详细信息
来源: 评论
A Novel Timing-based Network Covert Channel Detection Method
A Novel Timing-based Network Covert Channel Detection Method
收藏 引用
作者: Shoupu Lu Zhifeng Chen Guangxin Fu Qingbao Li State Key laboratory of Mathematical Engineering and Advanced Computing Henan University of Economics and Law
Network stealth events are endless,and covert timing channel is one of the most difficult means to *** order to further improve the detection rate of covert timing channel,several typical network covert timing channel... 详细信息
来源: 评论
Stealthy Malware Detection Based on Deep Neural Network
Stealthy Malware Detection Based on Deep Neural Network
收藏 引用
作者: Shoupu Lu Qingbao Li Xinbing Zhu State Key laboratory of Mathematical Engineering and Advanced Computing Henan University of Economics and Law
Network attacks using advanced local hiding technology have not only increased, but also become a serious threat. However, attacks using these technologies can not be detected through traffic detection, and some attac... 详细信息
来源: 评论
A short text spectrum clustering method based on frequent itemsets  4
A short text spectrum clustering method based on frequent it...
收藏 引用
4th IEEE International Conference on Computer and Communications, ICCC 2018
作者: Luo, Nan Zhang, Ping Li, Qingbao Chen, Zhifeng Feng, Peijun Xue, Tianxiao Engineering and Advanced Computing State Key Laboratory of Mathematical Zhengzhou China
Short text datum, which contains a lot of useful information, could be easily found on a wide variety of self-media platform and social communication tools. on It is significant to use datum mining technology to autom... 详细信息
来源: 评论
Pdf Exploitable malware analysis based on exploit genes  12
Pdf Exploitable malware analysis based on exploit genes
收藏 引用
12th IEEE International Conference on Anti-Counterfeiting, Security, and Identification, ASID 2018
作者: Zhou, Xin Pang, Jianmin Liu, Fudong Wang, Jun Yue, Feng Liu, Xiaonan State Key Laboratory of Mathematical Engineering and Advanced Computing Zhengzhou China
With the popularization of social networks, as a low-cost, high-efficiency entail attack method, most of the attack vectors were embedded in email attachments, and exploited vulnerability on Adobe and Office software.... 详细信息
来源: 评论