咨询与建议

限定检索结果

文献类型

  • 809 篇 会议
  • 778 篇 期刊文献

馆藏范围

  • 1,587 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,034 篇 工学
    • 623 篇 计算机科学与技术...
    • 502 篇 软件工程
    • 151 篇 信息与通信工程
    • 135 篇 电子科学与技术(可...
    • 127 篇 电气工程
    • 99 篇 控制科学与工程
    • 87 篇 化学工程与技术
    • 80 篇 材料科学与工程(可...
    • 80 篇 生物工程
    • 76 篇 网络空间安全
    • 64 篇 光学工程
    • 51 篇 机械工程
    • 50 篇 核科学与技术
    • 49 篇 仪器科学与技术
    • 41 篇 生物医学工程(可授...
    • 35 篇 动力工程及工程热...
    • 26 篇 力学(可授工学、理...
    • 26 篇 冶金工程
    • 26 篇 安全科学与工程
  • 752 篇 理学
    • 424 篇 物理学
    • 254 篇 数学
    • 96 篇 生物学
    • 93 篇 统计学(可授理学、...
    • 87 篇 化学
    • 73 篇 地球物理学
    • 39 篇 系统科学
  • 185 篇 管理学
    • 120 篇 管理科学与工程(可...
    • 71 篇 图书情报与档案管...
    • 28 篇 工商管理
  • 30 篇 法学
    • 25 篇 社会学
  • 27 篇 医学
  • 15 篇 经济学
  • 14 篇 军事学
  • 11 篇 农学
  • 8 篇 教育学
  • 2 篇 文学
  • 1 篇 艺术学

主题

  • 37 篇 feature extracti...
  • 32 篇 deep learning
  • 30 篇 semantics
  • 29 篇 cosmic rays
  • 29 篇 network security
  • 25 篇 security
  • 25 篇 training
  • 24 篇 machine learning
  • 23 篇 software
  • 20 篇 malware
  • 20 篇 gamma rays
  • 19 篇 cryptography
  • 16 篇 computational mo...
  • 16 篇 data models
  • 15 篇 algorithm design...
  • 13 篇 data mining
  • 12 篇 network topology
  • 12 篇 optimization
  • 11 篇 computer archite...
  • 11 篇 gravitational wa...

机构

  • 626 篇 state key labora...
  • 108 篇 university of sc...
  • 99 篇 tianfu cosmic ra...
  • 99 篇 hebei normal uni...
  • 99 篇 state key labora...
  • 96 篇 yunnan observato...
  • 95 篇 university of ch...
  • 88 篇 key laboratory f...
  • 86 篇 department of ph...
  • 84 篇 school of physic...
  • 84 篇 center for astro...
  • 83 篇 college of physi...
  • 82 篇 school of physic...
  • 82 篇 moscow institute...
  • 82 篇 school of astron...
  • 81 篇 institute of fro...
  • 81 篇 national space s...
  • 80 篇 school of physic...
  • 70 篇 department of en...
  • 67 篇 national astrono...

作者

  • 81 篇 axikegu
  • 78 篇 fang j.
  • 78 篇 feng c.f.
  • 76 篇 jiang k.
  • 76 篇 danzengluobu
  • 75 篇 bastieri d.
  • 69 篇 kuleshov d.
  • 69 篇 liu b.
  • 68 篇 liu d.
  • 68 篇 liu s.m.
  • 68 篇 huang d.h.
  • 68 篇 dai h.l.
  • 68 篇 guo y.q.
  • 67 篇 chen m.j.
  • 67 篇 bao y.w.
  • 66 篇 hu h.b.
  • 65 篇 liu h.d.
  • 64 篇 li cheng
  • 64 篇 mao j.r.
  • 64 篇 fan y.z.

语言

  • 1,455 篇 英文
  • 98 篇 其他
  • 38 篇 中文
检索条件"机构=State Key Laboratory of Mathmatical Engineering and Advanced Computing"
1587 条 记 录,以下是811-820 订阅
排序:
Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation
Cross-domain Object Detection through Coarse-to-Fine Feature...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Yangtao Zheng Di Huang Songtao Liu Yunhong Wang Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University State Key Laboratory of Software Development Environment Beihang University School of Computer Science and Engineering Beihang University Beijing China
Recent years have witnessed great progress in deep learning based object detection. However, due to the domain shift problem, applying off-the-shelf detectors to an unseen domain leads to significant performance drop.... 详细信息
来源: 评论
SURE-based Stopping Strategy for Fine-tunable Supervised PET Image Denoising
SURE-based Stopping Strategy for Fine-tunable Supervised PET...
收藏 引用
IEEE Symposium on Nuclear Science (NSS/MIC)
作者: Jianan Cui Kuang Gong Ning Guo Scott Wollenweber Floris Jansen Huafeng Liu Quanzheng Li State Key Laboratory of Modern Optical Instrumentation College of Optical Science and Engineering Zhejiang University Hangzhou China Center for Advanced Medical Computing and Analysis Massachusetts General Hospital/Harvard Medical School Boston MA USA Gordon Center for Medical Imaging Massachusetts General Hospital/Harvard Medical School Boston MA USA GE Healthcare Waukesha USA
Previously, based on the unsupervised deep learning method, conditional deep image prior (CDIP), we showed the possibility of finetuning during the testing phase after supervised learning. However, one barrier for CDI... 详细信息
来源: 评论
Stealthy Malware Detection Based on Deep Neural Network
Stealthy Malware Detection Based on Deep Neural Network
收藏 引用
作者: Shoupu Lu Qingbao Li Xinbing Zhu State Key laboratory of Mathematical Engineering and Advanced Computing Henan University of Economics and Law
Network attacks using advanced local hiding technology have not only increased, but also become a serious threat. However, attacks using these technologies can not be detected through traffic detection, and some attac... 详细信息
来源: 评论
A Novel Timing-based Network Covert Channel Detection Method
A Novel Timing-based Network Covert Channel Detection Method
收藏 引用
作者: Shoupu Lu Zhifeng Chen Guangxin Fu Qingbao Li State Key laboratory of Mathematical Engineering and Advanced Computing Henan University of Economics and Law
Network stealth events are endless,and covert timing channel is one of the most difficult means to *** order to further improve the detection rate of covert timing channel,several typical network covert timing channel... 详细信息
来源: 评论
Pdf Exploitable malware analysis based on exploit genes  12
Pdf Exploitable malware analysis based on exploit genes
收藏 引用
12th IEEE International Conference on Anti-Counterfeiting, Security, and Identification, ASID 2018
作者: Zhou, Xin Pang, Jianmin Liu, Fudong Wang, Jun Yue, Feng Liu, Xiaonan State Key Laboratory of Mathematical Engineering and Advanced Computing Zhengzhou China
With the popularization of social networks, as a low-cost, high-efficiency entail attack method, most of the attack vectors were embedded in email attachments, and exploited vulnerability on Adobe and Office software.... 详细信息
来源: 评论
The research on application of software diversity in cyberspace security  4
The research on application of software diversity in cybersp...
收藏 引用
4th IEEE International Conference on Computer and Communications, ICCC 2018
作者: Zhang, Jiexin Pang, Jianmin Zhang, Zheng Liu, Zhenwu State Key Laboratory of Mathematical Engineering and Advanced Computing ZhengZhou China
Nowadays, the cyberspace security situation is unoptimistic. Widespread vulnerabilities and backdoors are the main factors of insecurity in cyberspace. Furthermore, the software monoculture makes the attack have an ex... 详细信息
来源: 评论
Target function location based on code coverage analysis  2
Target function location based on code coverage analysis
收藏 引用
2nd International Conference on Material engineering and advanced Manufacturing Technology, MEAMT 2018
作者: Jin, Kaiwen Li, Qingbao Chen, Zhifeng State Key Laboratory of Mathematical Engineering and Advanced Computing Henan China
How to locate the target function faster and more accurately is a key problem of Automatic Reverse-engineering of Software Programs. In order to solve this problem, a target function location method based on code cove... 详细信息
来源: 评论
Vulnerability Model and Evaluation of the UEFI Platform Firmware Based on Improved Attack Graphs  9
Vulnerability Model and Evaluation of the UEFI Platform Firm...
收藏 引用
9th IEEE International Conference on Software engineering and Service Science, ICSESS 2018
作者: Cao, Fei Li, Qingbao Chen, Zhifeng State Key Laboratory of Mathematical Engineering and Advanced Computing Zhengzhou China
Targeted at the situation of rampant attack on UEFI Platform Firmware, this paper summarizes the UEFI platform firmware framework structure as well as its potential security problems. Then the vulnerability factors of... 详细信息
来源: 评论
A short text spectrum clustering method based on frequent itemsets  4
A short text spectrum clustering method based on frequent it...
收藏 引用
4th IEEE International Conference on Computer and Communications, ICCC 2018
作者: Luo, Nan Zhang, Ping Li, Qingbao Chen, Zhifeng Feng, Peijun Xue, Tianxiao Engineering and Advanced Computing State Key Laboratory of Mathematical Zhengzhou China
Short text datum, which contains a lot of useful information, could be easily found on a wide variety of self-media platform and social communication tools. on It is significant to use datum mining technology to autom... 详细信息
来源: 评论
Variations of secondary particle arrival time detected by LHAASO-KM2A during thunderstorms  38
Variations of secondary particle arrival time detected by LH...
收藏 引用
38th International Cosmic Ray Conference, ICRC 2023
作者: Chen, Xuejian Zhou, Xunxiu Yang, Ci Huang, Daihui Cao, Zhen Aharonian, F. An, Q. Axikegu Bai, Y.X. Bao, Y.W. Bastieri, D. Bi, X.J. Bi, Y.J. Cai, J.T. Cao, Q. Cao, W.Y. Cao, Zhe Chang, J. Chang, J.F. Chen, A.M. Chen, E.S. Chen, Liang Chen, Lin Chen, Long Chen, M.J. Chen, M.L. Chen, Q.H. Chen, S.H. Chen, S.Z. Chen, T.L. Chen, Y. Cheng, N. Cheng, Y.D. Cui, M.Y. Cui, S.W. Cui, X.H. Cui, Y.D. Dai, B.Z. Dai, H.L. Dai, Z.G. Danzengluobu della Volpe, D. Dong, X.Q. Duan, K.K. Fan, J.H. Fan, Y.Z. Fang, J. Fang, K. Feng, C.F. Feng, L. Feng, S.H. Feng, X.T. Feng, Y.L. Gabici, S. Gao, B. Gao, C.D. Gao, L.Q. Gao, Q. Gao, W. Gao, W.K. Ge, M.M. Geng, L.S. Giacinti, G. Gong, G.H. Gou, Q.B. Gu, M.H. Guo, F.L. Guo, X.L. Guo, Y.Q. Guo, Y.Y. Han, Y.A. He, H.H. He, H.N. He, J.Y. He, X.B. He, Y. Heller, M. Hor, Y.K. Hou, B.W. Hou, C. Hou, X. Hu, H.B. Hu, Q. Hu, S.C. Huang, D.H. Huang, T.Q. Huang, W.J. Huang, X.T. Huang, X.Y. Huang, Y. Huang, Z.C. Ji, X.L. Jia, H.Y. Jia, K. Jiang, K. Jiang, X.W. Jiang, Z.J. Jin, M. Kang, M.M. Ke, T. Kuleshov, D. Kurinov, K. Li, B.B. Li, Cheng Li, Cong Li, D. Li, F. Li, H.B. Li, H.C. Li, H.Y. Li, J. Li, Jian Li, Jie Li, K. Li, W.L. Li, W.L. Li, X.R. Li, Xin Li, Y.Z. Li, Zhe Li, Zhuo Liang, E.W. Liang, Y.F. Lin, S.J. Liu, B. Liu, C. Liu, D. Liu, H. Liu, H.D. Liu, J. Liu, J.L. Liu, J.Y. Liu, M.Y. Liu, R.Y. Liu, S.M. Liu, W. Liu, Y. Liu, Y.N. Lu, R. Luo, Q. Lv, H.K. Ma, B.Q. Ma, L.L. Ma, X.H. Mao, J.R. Min, Z. Mitthumsiri, W. Mu, H.J. Nan, Y.C. Neronov, A. Ou, Z.W. Pang, B.Y. Pattarakijwanich, P. Pei, Z.Y. Qi, M.Y. Qi, Y.Q. Qiao, B.Q. Qin, J.J. Ruffolo, D. Sáiz, A. Semikoz, D. Shao, C.Y. Shao, L. Shchegolev, O. Sheng, X.D. Shu, F.W. Song, H.C. Stenkin, Yu.V. Stepanov, V. Su, Y. Sun, Q.N. Sun, X.N. School of Physical Science and Technology Southwest Jiaotong University Chengdu610031 China Key Laboratory of Particle Astrophyics Experimental Physics Division Computing Center Institute of High Energy Physics Chinese Academy of Sciences Beijing100049 China University of Chinese Academy of Sciences Beijing100049 China TIANFU Cosmic Ray Research Center Sichuan Chengdu China Dublin Institute for Advanced Studies 31 Fitzwilliam Place Dublin 2 Ireland Max-Planck-Institut for Nuclear Physics P.O. Box 103980 Heidelberg69029 Germany State Key Laboratory of Particle Detection and Electronics China University of Science and Technology of China Anhui Hefei230026 China School of Physical Science and Technology School of Information Science and Technology Southwest Jiaotong University Sichuan Chengdu610031 China School of Astronomy and Space Science Nanjing University Jiangsu Nanjing210023 China Center for Astrophysics Guangzhou University Guangdong Guangzhou510006 China Hebei Normal University Hebei Shijiazhuang050024 China Key Laboratory of Dark Matter and Space Astronomy Key Laboratory of Radio Astronomy Purple Mountain Observatory Chinese Academy of Sciences Jiangsu Nanjing210023 China Tsung-Dao Lee Institute School of Physics and Astronomy Shanghai Jiao Tong University Shanghai200240 China Key Laboratory for Research in Galaxies and Cosmology Shanghai Astronomical Observatory Chinese Academy of Sciences Shanghai200030 China Key Laboratory of Cosmic Rays Tibet University Ministry of Education Tibet Lhasa850000 China National Astronomical Observatories Chinese Academy of Sciences Beijing100101 China School of Physics and Astronomy Sun Yat-sen University Zhuhai519000 China School of Physics Sun Yat-sen University Guangdong Guangzhou510275 China Sino-French Institute of Nuclear Engineering and Technology Sun Yat-sen University Zhuhai519000 China School of Physics and Astronomy Yunnan University Yunnan Kunming650091 China Départeme
A sub-array of the Large High Altitude Air Shower Observatory (LHAASO), KM2A contains 5216 electromagnetic particle detectors (EDs) and 1188 muon detectors (MDs). For each shower event that meets the trigger condition... 详细信息
来源: 评论